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What is Domain Adaptation (DA)?

Two type of domains: Source and Target .
Source domains with label and Target domains without label .

Assumption — shift between the distribution of the domain’s data

4 different types of shifts
Covariate Shift (CS): P3(x) # PL(x), P*(y|X) = P (y|X)

Target Shift (TS): P5,(x) # Py(x), P*(X]y) = P*(X]y)
Conditional Shift (CondS): P*(y|X) # Pt (y|X) or P*(X|y) # PY(X|y)

Subspace Shift (SS): P*(X) # P*(X) but it exists a subspace projection W such that
Ps(WX) = PHWX)
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What is Domain Adaptation (DA)?

Two type of domains: Source and Target .

Source domains with label and Target domains without label .

Assumption — shift between the distribution of the domain’s data

Source data

Target data

Covariate shift

Target shift

Conditional shift  Subspace shift
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What is Domain Adaptation (DA)?

Two type of domains: Source and Target .
Source domains with label and Target domains without label .

Assumption — shift between the distribution of the domain’s data

Source data Target data
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— Problem: Drop in performance when applying a model trained on the source to the
target.
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Traditional DA methods: Covariate Shift and target shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Reweighting

Source data Target data
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Traditional DA methods: Covariate Shift and target shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Reweighting

Source data Target data
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Traditional DA methods: Covariate Shift and target shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Reweighting

Source data Target data
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Traditional DA methods: Conditional Shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Mapping

Source data Target data
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Traditional DA methods: Conditional Shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Mapping

Source data Target data
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Traditional DA methods: Conditional Shift

One source (X, ys) and one target (X:,)

Adapt the source to the target via: Mapping

T. Gnassounou
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Target data
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Traditional DA methods: Subspace shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Subspace

Source data Target data
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Traditional DA methods: Subspace shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Subspace

Source data Target data

@
o

0

8
e ‘ggo
Og

.
Y
oo
*

7 e L«

T. Gnassounou Domain Adaptation

Reading Group Hi!Paris, 11-03-2025

7/36



Traditional DA methods: Subspace shift

One source (X, ys) and one target (X:,)
Adapt the source to the target via: Subspace

Source data Target data

(3
T4 ¥
RE AT .
@
° "’ = ::’r @
}"i: o & 8o ot
@ @ -

T. Gnassounou Domain Adaptation

Reading Group Hi!Paris, 11-03-2025

7/36



Multi-source multi-target Domain Adaptation

Domain manifold
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Source-free Domain Adaptation (or Test-Time DA)

T. Gnassounou

4 N N
1. Train-time 2. Test-time

Acces to Source domains with labels No access to Source domains
No access to Target domains Acces to Target domains without labels
Train a model on the source domains Finetune the model on the target domains
with labels without access to the target labels

\_ J J
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Real-world applications: Computer Vision
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Source: Peng et. al., 2019
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Real-world applications: Computer Vision

Train Val (OOD) Test (OOD)
d = Hospital 1 d = Hospital 2 d = Hospital 4
i S RN
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y = Normal

Tumor

y=

Source: Koh et. al., WILDS, 2020
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Real-world applications: Biology

Train Test
Scaffold 11 Scaffold 32 Scaffold 321 Scaffold 4413 /SM
r SN B L ) ié;}
0 || 7 ||~ 95
X / = - 021,20,
1.0.2.0.%:) (2.0.8.0.2:) 0,1,1.00,: (?,0,0,0,?,..) |e®® [N X ]
Scaffold 65912
‘ S
ot || gl || 4
AL 5488 [‘HCO
(?,0,0,0,7,..) (?,0,7,1,0,..) (?,0,0,0,1,.) (1,1,0,1,0,..)
\ N NS SN ® (0,1,0,0,0..)

T. Gnassounou

Domain Adaptation

Reading Group Hi!Paris, 11-03-2025

Source: Koh et. al., WILDS, 2020

12/36



Real-world applications

: Time series
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Example: Sleep stage classification from EEG signals?
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Deep Learning for DA

Why use Deep Learning?

More fine-grained feature extraction

End-to-end learning: no need for adaptation step

Inputs DA loss Prediction
loss
Source data
(X, ys)
Target data
(Xt))
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Deep learning for DA

Liot(h, f) = L(F(h(X5)),ys) — A Loa(F(h(X5)), f(h(Xt)))

Prediction Loss DA loss

Loss — Cross-entropy loss
Regularization — Threshold between the loss and the DA loss

DA loss — Reduce divergence between source and target features

(h, f) = argmin Liot(h, f)
h,f

)
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How to reduce the divergence between source and target

features?

Domain-Adversarial Training of Neural Networks

Yaroslav Ganin
Evgeniya Ustinova

GANIN@SKOLTECH.RU
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Skolkovo Institute of Science and Technology (Skoltech)

Skolkovo, Moscow Region, Russia
Hana Ajakan
Deep CORAL: Correlation Alignment for Deep

DeepJDOT: Deep Joint Distribution Optimal

Transport for Unsupervised Domain Adaptation
Université Lavc
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Abstract. Decp neural networks are able to learn powerful represen- Université Lav
tations from large quantities of labeled input data, however they can-
not always generalize well across changes in input distributions. Domain
adaptation algorithms have been proposed to compensate for the degra-
dation in performance due to domain shift. In this paper, we address
the case when the target domain is unlabeled, requiring unsupervised
adaptation. CORAL([1] is a “frustratingly easy” unsupervised domain
adaptation method that aligns the second-order statistics of the source
and target distributions with a linear transformation. Here, we extend
CORAL to learn a nonlinear transformation that aligns correlations of
layer activations in deep neural networks (Deep CORAL). Experiments
on standard benchmark datasets show state-of-the-art performance.

oltech)

rabona, and Tz

Abstract

We introduce a new representation learning approach for
data at training and test time come from similar but differe:

‘ Bharath Bhushan Damodaran'* , Benjamin Kelleuberger

Devis Tuia?, Nicolas Courty"

! Université de Bretagne Sud, IRISA, UMR 6074, CNRS, France
2 Wageningen University, the Netherlands
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Abstract. In computer vision, one is often confronted with problems
of domain shifts, which occur when one applies a classifier trained on a
source dataset to target data sharing similar characteristics (e.g. same
classes), but also different latent data structures (e.g. different acquisition
conditions). In such a situation, the model will perform poorly on the new
data, since the classifier is specialized to recognize visual cues specific to
the source domain. In this work we explore a solution, named DeepJDOT,
to tackle this problem: through a measure of discrepancy on joint deep
representations/labels based on optimal transport, we not only learn
new data representations aligned between the source and target domain,
but also simultaneously preserve the discriminative information used by
sifier. We applied DeepJDOT to a series of visual recognition

tasks, where it compares favorably against state-of-the-art deep domain
adaptation methods.

is directly inspired by the theory on domain adaptation suggesting tnat, 1or errective do-
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DeepCoral: Correlation Alignment!

With d the dimension of the feature space, the Coral loss is defined as:

Target Covariance

Loa(h) = 71l CCAOG)) — CRX)) I

T Source Covariance

with || - ||r the Frobenius norm. The covariance matrices are defined as:

_ 1 T L T T(qT
C(X)—N_1<XX N(l X)) 1'X)),
with 1 a vector of ones and N the number of samples.

1Sun et. al., 2016
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DANN: Domain Adversarial Neural Network!

Adversarial training with a domain classifier

Binary classification: d = 0 for source and d =1 for target

Prediction
loss

Inputs

Source data
(X, s)

4= [fh(X,), falh(X))
DA loss

Target data
(Xt7 )

YGanin et. al., 2016
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DANN: Domain Adversarial Neural Network!

Binary cross entropy

Adversarial loss with binary cross entropy (BCE) loss:

Loa(g, f,f9) = — BCE([f4(h(Xs)), fa(h(X:))],[0,1]) .

Reverse gradient

~

(h, f) = argmin Lot(g, F, F9)
h,f

E = argmax Lpa(g, f,f9) .

fa

In practice:
Joint optimization of the feature extractor and the domain classifier

Reverse Gradient Layer

fa — 3 layers of fully connected layers
YGanin et. al., 2016
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DeepJDOT: Joint Distribution Optimal Transport!

— Optimal Transport to align the source and target distributions

Brief reminder on Optimal Transport
The relaxed version of the Kantorovitch Problem is?: Transport plan

e
Yo = argmin/ c(Xs, Xe) d v(Xs, Xt)
XSXXt

yen
Cost matrix

where I is the set of all the couplings between marginal distributions us and ;.

For discrete OT, introducing the cost matrix (C);; = c(X{, xJ) the Kantorovitch Problem
becomes:

Yo = argmin(y, C)F , (1)
YEB

YDamodaran et. al., 2018
2Peyré et. al., 2019
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DeepJDOT: Joint Distribution Optimal Transport!

The Joint Distribution Optimal Transport loss is defined as:

Loa(h, ) = (7,Chg)F ,

Ch,r the cost matrix defines with the feature extractor and the classifier :

Chr(X, XE) = a ||n(X]) = hXDIP + 8 L(F((X]), ¥d)

Distance TPseudo—Iabeling loss

Cost matrix — reduce Distance between source and target features

Cost matrix — Map target with same predicted label as source
Regularization between distance and pseudo-labeling loss

YDamodaran et. al., 2018
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DeepJDOT: Joint Distribution Optimal Transport!

Two steps optimization:
1. Compute the optimal transport plan ~ between the source and target batches
v = argmin (7, Chf)F
v
Can be done using POT 2 library.
2. Update the feature extractor and the classifier by minimizing the total loss

(IA1, 7?) = argmin Liot(h, )
hf

YDamodaran et. al., 2018
2F/amary et. al., 2017
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In practice: How to choose the best regularization?

No labels in the target domain — No way to tune the hyperparameters .

DeepCoral — 1 hyperparameter
DANN — 1 hyperparameter
DeepJDOT — 2 hyperparameters

Solutions in paper:

DeepCoral — A fixed: £ ~ Lpa at the end of the training
DANN — Reversed cross-validation®
DeepJDOT — "Fixed experimentally” ...

1Zhong et. al., 2010
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DA scorer: Metric to set the best hyperparameters

Import Weighted ! — Score as a reweighted accuracy on labeled sources data

Depp Embedded Validation > — IW strategy in the latent space with variance
reduction strategy

Prediction Entropy 3 — Reduce Entropy of the prediction on the target domain to

reduce uncertainty

Circular Validation # — Adapt Source to Target then Target to Source with predicted

labels

LSugiyama et. al.,
2You et. al.,

3 Morerio et. al.,
4 Bruzzone et. al.,

T. Gnassounou Domain Adaptation Reading Group Hi!Paris, 11-03-2025
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Experimental results: Digits dataset

Digits dataset

MNIST SYN NUMBERS SVHN SYN SIGNS
SOURCE ,m 8 i . 0
TARGET 1 ‘1 8 ?5' \- ..

MNIST-M SVIIN MNIST GTSRB

Source: Ganin et. al., 2016
Classification of 10 classes over 5 domains

Shift between the domains: Font , Color , Style
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Experimental results: Digits dataset

Method Adaptation:source—target
MNIST — USPS|USPS — MNIST|SVHN — MNIST|MNIST — MNIST-M
Source only 94.8 59.6 60.7 60.8
DeepCORAL (6] 89.33 9L.5 59.6 66.5
MMD [14] 88.5 73.5 64.8 72.5
DANN (8] 95.7 90.0 70.8 75.4
ADDA [21] 92.4 93.8 76.0° 78.8
AssocDA [16] - - 95.7 89.5
Self-ensemble?[42] 88.14 92.35 93.33 -
DRCN [40] 91.8 73.6 81.9 -
DSN [41] 91.3 - 82.7 83.2
CoGAN [9] 91.2 89.1 - -
UNIT [18] 95.9 93.5 90.5 -
GenToAdapt [19] 95.3 90.8 92.4 -
121 Adapt [20] 92.1 87.2 80.3 -
StochJDOT 93.6 90.5 67.6 66.7
DeepJDOT (ours) 95.7 96.4 96.7 92.4
target only | 95.8 | 98.7 \ 98.7 | 96.8

Source: Damodaran et. al., 2018
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Experimental results: TSNE visualization with Source Only

Source (red) VS target (blue) Class discrimination

P >
kg

Source Only

Target domain samples are not clustered
Source: Damodaran et. al., 2018
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Experimental results: TSNE visualization with DANN

t e ‘
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DANN

Target domain samples are more clustered but few are misclassified

Source: Damodaran et. al., 2018
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Experimental results: TSNE visualization with DeepJDOT

\
\
"

Target domain samples are perfectly clustered !

Source: Damodaran et. al., 2018
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How to use DA?

Skada ! is a Python library to easily use DA methods.

Homogeneous API for all DA methods (Shallow and Deep learning).
Sklearn-like APl with estimator class (.fit, .predict, ...), pipeline, grid search . ..

DA scorer to validate hyper-parameters without using target label.

KADA

L Gnassounou et. al., 2024
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Data format in Skada

X — 2D array of shape (n_samples, n_features)
y — 1D array of shape (n_samples,)

sample_domain — 1D array of shape (n_samples,) giving the domain of each
sample

from skada.datasets import make_shifted_datasets

X, y, sample_domain = make_shifted_datasets(
20, 20, shift='covariate_shift', random_state=42

g W N =

)

All shift are available in make_shifted_datasets function
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Shallow DA in Skada

Initialize the estimator
Fit the model

Don't forget to give the sample domain

[ 1 from skada import LinOT )
2
3 estimator = Lin0T()
4 estimator.fit(X, y, sample_domain=sample_domain)

N 7/

~ 20 shallow methods available in Skada
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Pipeline DA in Skada

Can be used with Pipeline

i 1 from skada import make_da_pipeline )
2 from skada import LinOTAdapter, GaussianReweightAdapter
3 from sklearn.linear_model import LogisticRegression
4
5 pipeline = Pipeline(
6 Lin0TAdapter(),
7 LogisticRegression()
8 )
9 pipeline.fit (X, y, sample_domain=sample_domain)
\y v

Possibility to mixed DA adapters

g 1 pipeline = Pipeline( ]
2 Lin0TAdapter(),
3 GaussianReweightAdapter (),
4 LogisticRegression()
5 )
. J
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DA scorer in Skada

Possibility to use cross_val_score with DA scorers

DA scorers are used to validate the hyperparameters without using the target labels

from skada.scorers import ImportanceWeightedScorer

o

2
3 scorer = ImportanceWeightedScorer()
4 score = cross_val_score(pipeline, X, y, sample_domain=sample_domain,
— scoring=scorer)
o 7

6 DA scorers available in Skada
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Deep DA method in Skada

Use Skorch — Pytorch wrapper for Sklearn

Give an architecture and hyperparameters

1 from skada.deep import DeepCoral

2 from skada.deep.modules import ToyCNN
3

4 model = DeepCoral(

5 ToyCNNQ) ,

6 batch_size=32,

7 max_epochs=5,

8 lr=1e-3,

9 reg=1,

=
(=]

layer_name="feature_extractor",
)

model.fit (X, y, sample_domain=sample_domain)

Jun
—

-
=
M)

~ 10 Deep DA methods available in Skada
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Conclusion

Distribution shift is a challenging problem

Deep learning methods reduce the shift in the feature space
Modern DA methods are more focus on Test-Time DA

Try Skada to easily use DA methods

Don't hesitate to contribute to the library!

KAD
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