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Sleep stage classification from EEG signals

Multi-source EEG signals
from subjects/hospitals

Target EEG signals from a
new subject/hospital

No access to the target
labels

Shift between the domains
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— Goal: Adapt the source to the target to classify the target signals
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What is Domain Adaptation (DA)?

Two type of domains: Source and Target .
Source domains with label and Target domains without label .

Assumption — shift between the distribution of the domain’s data

Source data Target data
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What is Domain Adaptation (DA)?

Two type of domains: Source and Target .
Source domains with label and Target domains without label .

Assumption — shift between the distribution of the domain’s data

Source data Target data
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— Problem: Drop in performance when applying a model trained on the source to the
target.
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Traditional DA methods: Deep Learning

Prediction

Inputs DA loss loss

Source data
(X87 ys)

Target data
(Xt7)

Reduce the divergence between the source and target features with:
O Correlation Alignment?
O Domain Adversarial Neural Network?
O Joint Distribution Optimal Transport?
o ...

YSun et. al., 2016 %Ganin et. al., 2016 3Damodaran et. al., 2018
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Multi-source multi-target Domain Adaptation

Domain manifold
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— Mutliple subjects and hospitals with different EEG signals
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Source-free Domain Adaptation (or Test-Time DA)

4 N )
1. Train-time 2. Test-time
Acces to Source domains with labels No access to Source domains
No access to Target domains Acces to Target domains without labels
Train a model on the source domains Finetune the model on the target domains
with labels without access to the target labels
- U\ J

— Practionners only have access to the target data at test-time
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Distribution alighment to barycenter to tackle domain shift

Train-time
1 - Barycenter computation 2 - Alignment to Barycenter |3 - Classifier Training

Source distributions

)

Test-time

1 - Alignment to Barycenter 2 - Prediction on target
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Assumptions on the signals

Centered Gaussian distributions — X ~ A(0,X) with X € §;+
2 is the "auto-covariance”, computed with time-lagged. X;; = X;X;

Stationarity+Periodicity — Covariance matrices are Toeplitz circulant matrices.

Ty Ty

—>

Compute
covariance

—>

)Y

T. Gnassounou Domain Adaptation Huawei Seminar, 19-03-2025 9/33



Assumptions on the signals

The Discrete Fourier Transform (DFT) can diagonalize the circulant matrix
Y = Fdiag(p)F*,

with F and F* the Fourier transform operator and its inverse, and p the Power Spectral
Density (PSD) of the signal.

Ty Ny

Compute
covariance

—>

- F F"

> =F diag(p) F"
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Monge mapping for Gaussian distributions

Let consider Gaussian distributions g = N(0,X,) with d € {s, t}. The OT cost, also called
the Bures-Wasserstein distance when using a quadratic ground metric, is

1 1\ 2
W3 (s, ) = Tr (Zs +X, -2 (ZEZSZ,?) ) . (1)

The OT mapping, also called Monge mapping , can be expressed as the following affine
function :

1
1Y\ 2

1 1
m(x) = Ax, with A= X, 2 ():52 > ):g)

Map

_1
r.2=AT. (2)

Source Covariance
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Wasserstein barycenter between Gaussian distributions

Considering multiple Gaussian distributions px. The barycenter [ is expressed as

K

_ 1
fi=arg min - > W3 (. i) - (3)
# k=1
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Wasserstein barycenter between Gaussian distributions

Considering multiple Gaussian distributions px. The barycenter [ is expressed as

K
_ 1
fi=arg min - > W3 (. i) -
# k=1

The barycenter is still a Gaussian distribution i = A/(0,%) .
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Wasserstein barycenter between Gaussian distributions

Considering multiple Gaussian distributions px. The barycenter [ is expressed as

K
_ 1
fi=arg min - > W3 (. i) - (3)
# k=1

The barycenter is still a Gaussian distribution i = A/(0,%) .

—> No closed-form for computing the covariance X .
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Wasserstein barycenter between Gaussian distributions

Considering multiple Gaussian distributions px. The barycenter [ is expressed as

K
fi = arg min &> WA (i) )
" k=1
The barycenter is still a Gaussian distribution i = A/(0, %)
—> No closed-form for computing the covariance X .
One uses the following optimality condition from?:

?if(ii mxl) g

Barycenter Covariance TDomain k Covariance

YAgueh et. al., 2011
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Previoulsy for Univariate Gaussian stationary signals

Stationary Gaussian signals with PSD ps and p;
Monge mapping between the two univariate signals

After diagonalization of the covariance matrix, the mapping is expressed as a
convolution !:

m(x) = hxx, with h=F" (pt ©2 & ps ®_%> . (5)

Filter Source PSD

1F/amary et. al., 2018
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Wasserstein barycenter between Gaussian stationary signals

Lemma from?
Consider K centered stationary Gaussian signals of PSD py with k € [K], the Wasserstein
barycenter of the K signals is a centered stationary Gaussian signal of PSD p with:

®2

k=1 >
Barycenter PSD Domain k PSD

Sketch of proof: the proof directly applies the optimality condition (7) of the barycenter.
With factorized covariances, the matrix square root and the inverse can be simplified as
element-wise square root and inverse.

(6)
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L Gnassounou et. al., 2023
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New assumption on the signals

Multivariate signals with cross covariance > € S

Reduction of parameters from (n; x nc)? — n; x n?

P is the cross-PSD matrix of the signal
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Monge mapping for Multivariate Gaussian stationary signals

Let consider Gaussian distributions pg = N(0,X,) with d € {s, t} and
¥, =FUQuU'F"

diag(p1,1) ... diag(p1,n) B X NE
éUPS2<PS2PtP§> P, 2UT e
diag(pn.,1) ... diag(pnc,n.)
Source Cross-PSD
Given a signal X = [x1,...,%,.]T € R™X" the Monge mapping is a sum of convolutions

T

ne Nc
m(X): E hl’j*Xj,...,E hnc,j*xj
j=1 j=1

where h;; = —-Fp;; € R".

Filter between sensor i and j
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Wasserstein barycenter for Multivariate Gaussian stationary signals

No more closed form for the barycenter covariance X.
The barycenter PSD P is expressed as

1 K —1 -1\ 3
K2 (PIRRE)”. )

P —
Barycenter cross—PSDT Domain k cross-PSD
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How to reduce the the number of parameters of the filter?

ny x n? parameters for h still highlight %HEHEHEH%
|1
o Cutth s o gmans it

O Compute the PSD of each segment @%Hﬁ%&

O Average the PSD

ne—f
Ty
Compute
covarlance E — F E FH
| =F diag(p) F"
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Convolutional Monge Mapping Normalization (CMMN)

4 Y4 )

1. Train-time: Access to source domains 2. Test-time: Access to unseen target
data

Compute cross-PSD P, for each source R
domain. Compute the cross-PSD P; for the

target domain.
Compute barycenter p with the PSD

P, . Compute the convolutional filter h
between target domain and the
Compute the convolutional filters h barycenter P.
Train a predictor g on the normalized Predict target labels with trained
source data. predictor g.
- AN J
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lllustration of the monge mapping for two signals
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(b) Bures-Wasserstein distance
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Cross-PSD alignment to barycenter for different filters size

Ch. 1 Ch. 2 Ch. 3 Ch. 1 Ch. 2
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Domain adaptation in biosignals

Possible variability in biosignals:

Variability in the patient population : age, gender, height, diseased or healthy, different
sleep stage proportion.
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Domain adaptation in biosignals

Possible variability in biosignals:

Variability in the patient population : age, gender, height, diseased or healthy, different
sleep stage proportion.

Variability in recording and preprocessing : different sensors, sensor positions,
impedance, noise, interference, sampling rates, filtering.

Variability in data interpretation by specialist : different scoring criteria, subjectivity,
tiredness.

— Domain Adaptation problem.

T. Gnassounou Domain Adaptation Huawei Seminar, 19-03-2025 22/33



Sleep Staging

Spectrogram & Hypnogram

Classification problem with five classes:
Wake, N1, N2, N3, REM

Frequencies (Hz)

Frequency helps to classify sleep stage

Sleep Stages
z

3 1
Time (hours)

T. Gnassounou Domain Adaptation Huawei Seminar, 19-03-2025 23/33



Experimental setup

Four different datasets: ABC , CHAT , HOMEPAP and MASS
Around 300 subjects in total

One domain = One subject

Seven EEG channels

Use CNN architecture from?!

YChambon et. al., 2018

T. Gnassounou Domain Adaptation Huawei Seminar, 19-03-2025 24 /33



Results on Sleep data
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Results on Sleep data

BACC with STMA

Target: ABC Target: CHAT Target: HOMEPAP Target: MASS
(44 subj.) (100 subj.) (100 subj.) (42 subj.)
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BACC with No Align.

Huawei Seminar,

19-03-2025

26/33



How to use DA?

Skada ! is a Python library to easily use DA methods.

Homogeneous API for all DA methods (Shallow and Deep learning).
Sklearn-like APl with estimator class (.fit, .predict, ...), pipeline, grid search . ..

DA scorer to validate hyper-parameters without using target label.

KADA

L Gnassounou et. al., 2024
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Data format in Skada

X — 2D array of shape (n_samples, n_features)
y — 1D array of shape (n_samples,)

sample_domain — 1D array of shape (n_samples,) giving the domain of each
sample

from skada.datasets import make_shifted_datasets

X, y, sample_domain = make_shifted_datasets(
20, 20, shift='covariate_shift', random_state=42

g W N =

)

All shift are available in make_shifted_datasets function
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Shallow DA in Skada

Initialize the estimator
Fit the model

Don't forget to give the sample domain

[ 1 from skada import LinOT )
2
3 estimator = Lin0T()
4 estimator.fit(X, y, sample_domain=sample_domain)

~ 20 shallow methods available in Skada
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Pipeline DA in Skada

Can be used with Pipeline

i 1 from skada import make_da_pipeline )
2 from skada import LinOTAdapter, GaussianReweightAdapter
3 from sklearn.linear_model import LogisticRegression
4
5 pipeline = Pipeline(
6 Lin0TAdapter(),
7 LogisticRegression()
8 )
9 pipeline.fit (X, y, sample_domain=sample_domain)
\y v

Possibility to mixed DA adapters

g 1 pipeline = Pipeline( ]
2 Lin0TAdapter(),
3 GaussianReweightAdapter (),
4 LogisticRegression()
5 )
. J
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DA scorer in Skada

Possibility to use cross_val_score with DA scorers

DA scorers are used to validate the hyperparameters without using the target labels

from skada.scorers import ImportanceWeightedScorer

o

2
3 scorer = ImportanceWeightedScorer()
4 score = cross_val_score(pipeline, X, y, sample_domain=sample_domain,
— scoring=scorer)
o 7

6 DA scorers available in Skada

T. Gnassounou Domain Adaptation Huawei Seminar, 19-03-2025 31/33



Deep DA method in Skada

Use Skorch — Pytorch wrapper for Sklearn

Give an architecture and hyperparameters

1 from skada.deep import DeepCoral

2 from skada.deep.modules import ToyCNN
3

4 model = DeepCoral(

5 ToyCNNQ) ,

6 batch_size=32,

7 max_epochs=5,

8 lr=1e-3,

9 reg=1,

=
(=]

layer_name="feature_extractor",
)

model.fit (X, y, sample_domain=sample_domain)

Jun
—

-
=
M)

~ 10 Deep DA methods available in Skada
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Conclusion

Distribution shift is a challenging problem in biosignals

Alignment of the cross-PSD is a powerful tool to tackle the problem
Try Skada to easily use DA methods

Don't hesitate to contribute to the library!

KAD
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