Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment

Théo Gnassounou, Antoine Collas, Rémi Flamary, Karim Lounici, Alexandre Gramfort

Huawei Seminar, 19-03-2025

Sleep stage classification from EEG signals

Multi-source EEG signals from subjects/hospitals

- **Target** EEG signals from a new subject/hospital
- No access to the target labels

Shift between the domains

 \rightarrow Goal: Adapt the source to the target to classify the target signals

What is Domain Adaptation (DA)?

Two type of domains: Source and Target .

Source domains with label and Target domains without label.

Assumption \rightarrow shift between the distribution of the domain's data

What is Domain Adaptation (DA)?

Two type of domains: Source and Target .

- **Source** domains with label and Target domains without label.
- Assumption \rightarrow shift between the distribution of the domain's data

Target data

 \rightarrow **Problem:** Drop in performance when applying a model trained on the source to the target.

Traditional DA methods: Deep Learning

Reduce the **divergence** between the source and target features with:

- Correlation Alignment¹
- Domain Adversarial Neural Network²
- Joint Distribution Optimal Transport³

Ο...

¹Sun et. al., 2016 ²Ganin et. al., 2016 ³Damodaran et. al., 2018

Multi-source multi-target Domain Adaptation

Domain manifold

\rightarrow Mutliple subjects and hospitals with different EEG signals

Source-free Domain Adaptation (or Test-Time DA)

1. Train-time

Acces to **Source** domains with labels

No access to **Target** domains

Train a model on the source domains with labels

2. Test-time

No access to Source domains

Acces to Target domains without labels

Finetune the model on the target domains without access to the target labels

 \rightarrow Practionners only have access to the target data at test-time

Distribution alignment to barycenter to tackle domain shift

Test-time

Assumptions on the signals

Centered Gaussian distributions $o \mathsf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ with $\mathbf{\Sigma} \in \mathcal{S}_{n_\ell}^{++}$

\Sigma is the "auto-covariance", computed with time-lagged. $\mathbf{\Sigma}_{i,j} = \mathbf{X}_i \mathbf{X}_j$

Stationarity+Periodicity \rightarrow Covariance matrices are **Toeplitz circulant** matrices.

Assumptions on the signals

The Discrete Fourier Transform (DFT) can diagonalize the circulant matrix

 $\pmb{\Sigma} = \pmb{\mathsf{F}}\mathsf{diag}(\pmb{\mathsf{p}})\pmb{\mathsf{F}}^* \;,$

with **F** and \mathbf{F}^* the Fourier transform operator and its inverse, and **p** the Power Spectral Density (PSD) of the signal.

Monge mapping for Gaussian distributions

Let consider Gaussian distributions $\mu_d = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_d)$ with $d \in \{s, t\}$. The OT cost, also called the **Bures-Wasserstein distance** when using a quadratic ground metric, is

$$\mathcal{W}_{2}^{2}(\mu_{s},\mu_{t}) = \operatorname{Tr}\left(\boldsymbol{\Sigma}_{s} + \boldsymbol{\Sigma}_{t} - 2\left(\boldsymbol{\Sigma}_{t}^{\frac{1}{2}}\boldsymbol{\Sigma}_{s}\boldsymbol{\Sigma}_{t}^{\frac{1}{2}}\right)^{\frac{1}{2}}\right) .$$
(1)

The OT mapping, also called **Monge mapping**, can be expressed as the following affine function :

$$m(\mathbf{x}) = \mathbf{A} \mathbf{x}, \text{ with } \mathbf{A} = \mathbf{\Sigma}_{s}^{-\frac{1}{2}} \left(\mathbf{\Sigma}_{s}^{\frac{1}{2}} \mathbf{\Sigma}_{t} \mathbf{\Sigma}_{s}^{\frac{1}{2}} \right)^{\frac{1}{2}} \mathbf{\Sigma}_{s}^{-\frac{1}{2}} = \mathbf{A}^{\mathsf{T}}.$$
(2)
Map
Source Covariance

Considering multiple Gaussian distributions μ_k . The barycenter $\bar{\mu}$ is expressed as

$$\bar{\mu} = \arg\min_{\mu} \frac{1}{K} \sum_{k=1}^{K} \mathcal{W}_2^2(\mu, \mu_k) .$$
(3)

Considering multiple Gaussian distributions μ_k . The barycenter $\bar{\mu}$ is expressed as

$$\bar{\mu} = \arg\min_{\mu} \frac{1}{K} \sum_{k=1}^{K} \mathcal{W}_2^2(\mu, \mu_k) .$$
(3)

The barycenter is still a Gaussian distribution $\bar{\mu} = \mathcal{N}(\mathbf{0}, \bar{\mathbf{\Sigma}})$.

Considering multiple Gaussian distributions μ_k . The barycenter $\bar{\mu}$ is expressed as

$$\bar{\mu} = \arg\min_{\mu} \frac{1}{K} \sum_{k=1}^{K} \mathcal{W}_2^2(\mu, \mu_k) .$$
(3)

The barycenter is still a Gaussian distribution $\bar{\mu} = \mathcal{N}(\mathbf{0}, \bar{\mathbf{\Sigma}})$.

 \implies No closed-form for computing the covariance $\bar{\Sigma}$.

Considering multiple Gaussian distributions μ_k . The barycenter $\bar{\mu}$ is expressed as

$$\bar{\mu} = \arg\min_{\mu} \frac{1}{\kappa} \sum_{k=1}^{\kappa} \mathcal{W}_2^2(\mu, \mu_k) .$$
(3)

The barycenter is still a Gaussian distribution $\bar{\mu} = \mathcal{N}(\mathbf{0}, \bar{\mathbf{\Sigma}})$.

 \implies No closed-form for computing the covariance $\bar{\Sigma}$.

One uses the following optimality condition from¹:

$$\bar{\boldsymbol{\Sigma}} = \frac{1}{K} \sum_{k=1}^{K} \left(\bar{\boldsymbol{\Sigma}}^{\frac{1}{2}} \boldsymbol{\Sigma}_{k} \bar{\boldsymbol{\Sigma}}^{\frac{1}{2}} \right)^{\frac{1}{2}}, \qquad (4)$$
Barycenter Covariance

¹Agueh et. al., 2011

Previoulsy for Univariate Gaussian stationary signals

Stationary Gaussian signals with **PSD** \mathbf{p}_s and \mathbf{p}_t

- **Monge mapping** between the two **univariate** signals
- After diagonalization of the covariance matrix, the mapping is expressed as a convolution ¹:

$$m(\mathbf{x}) = \mathbf{h} * \mathbf{x} , \text{ with } \mathbf{h} = \mathbf{F}^* \left(\mathbf{p}_t \odot^{\frac{1}{2}} \odot \mathbf{p}_s \odot^{-\frac{1}{2}} \right) . \tag{5}$$

¹Flamary et. al., 2018

Wasserstein barycenter between Gaussian stationary signals

Lemma from¹

Consider K centered stationary Gaussian signals of PSD \mathbf{p}_k with $k \in [K]$, the Wasserstein barycenter of the K signals is a centered stationary Gaussian signal of PSD $\mathbf{\bar{p}}$ with:

$$\vec{\mathbf{p}} = \left(\frac{1}{K}\sum_{k=1}^{K} \mathbf{p}_{k}^{\odot \frac{1}{2}}\right)^{\odot 2}.$$
Barycenter PSD (6)

Sketch of proof: the proof directly applies the optimality condition (7) of the barycenter. With factorized covariances, the matrix square root and the inverse can be simplified as element-wise square root and inverse.

¹Gnassounou et. al., 2023

New assumption on the signals

Multivariate signals with cross covariance $\mathbf{\Sigma} \in \mathcal{S}_{n_{\ell}n_{c}}^{++}$

Reduction of parameters from $(n_\ell imes n_c)^2
ightarrow n_\ell imes n_c^2$

P is the cross-PSD matrix of the signal

Monge mapping for Multivariate Gaussian stationary signals

Let consider Gaussian distributions $\mu_d = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_d)$ with $d \in \{s, t\}$ and $\mathbf{\Sigma}_d = \mathbf{FUQ}_d \mathbf{U}^\mathsf{T} \mathbf{F}^\mathsf{H}$

$$\begin{pmatrix} \operatorname{diag}(\mathbf{p}_{1,1}) & \dots & \operatorname{diag}(\mathbf{p}_{1,n_c}) \\ \dots & \dots & \dots \\ \operatorname{diag}(\mathbf{p}_{n_c,1}) & \dots & \operatorname{diag}(\mathbf{p}_{n_c,n_c}) \end{pmatrix} \triangleq \mathbf{UP}_s^{-\frac{1}{2}} \left(\begin{array}{c} \mathbf{P}_s \\ \mathbf{P}_s \end{array}^{\frac{1}{2}} \mathbf{P}_t \\ \mathbf{P}_s \end{array}^{\frac{1}{2}} \mathbf{P}_s^{-\frac{1}{2}} \mathbf{U}^{\mathsf{T}} \in \mathcal{H}_{n_c f}^{++} \\ \begin{array}{c} & & \\ &$$

Given a signal $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{n_c}]^{\mathsf{T}} \in \mathbb{R}^{n_c \times n_\ell}$ the Monge mapping is a sum of convolutions

$$m(\mathbf{X}) = \left[\sum_{j=1}^{n_c} \mathbf{h}_{1,j} * \mathbf{x}_j, \dots, \sum_{j=1}^{n_c} \mathbf{h}_{n_c,j} * \mathbf{x}_j\right]^\mathsf{T}$$

where
$$\mathbf{h}_{i,j} = \frac{1}{\sqrt{f}} \mathbf{F}^{\mathsf{H}} \mathbf{p}_{i,j} \in \mathbb{R}^{f}$$
.
Filter between sensor *i* and *j*

Wasserstein barycenter for Multivariate Gaussian stationary signals

No more closed form for the barycenter covariance $\bar{\Sigma}$.

The barycenter PSD $\overline{\mathbf{P}}$ is expressed as

$$\vec{\mathbf{P}} = \frac{1}{K} \sum_{k=1}^{K} \left(\vec{\mathbf{P}}^{\frac{1}{2}} \mathbf{P} \vec{\mathbf{P}}^{\frac{1}{2}} \right)^{\frac{1}{2}} ,$$
Barycenter cross-PSD

(7)

How to reduce the the number of parameters of the filter?

- $n_{\ell} \times n_{c}^{2}$ parameters for **h** still highlight $\mathbf{n}_{\ell} \to \mathbf{f}$
- Use Welch method to estimate the PSD
 - Cut the signal into segments
 - Compute the PSD of each segment
 - Average the PSD

Convolutional Monge Mapping Normalization (CMMN)

1. Train-time: Access to source domains

- Compute cross-PSD \hat{P}_k for each source domain.
- Compute **barycenter** $\hat{\mathbf{p}}$ with the PSD $\hat{\mathbf{P}}_k$.
- Compute the convolutional filters h
- **Train a predictor** *g* on the normalized source data.

- 2. Test-time: Access to unseen target data
- Compute the cross-PSD \hat{P}_t for the target domain.
- Compute the **convolutional filter h** between target domain and the barycenter $\mathbf{\bar{P}}$.
- Predict target labels with trained predictor *g*.

Illustration of the monge mapping for two signals

(a) Cross-PSD alignment

(b) Bures-Wasserstein distance

Cross-PSD alignment to barycenter for different filters size

Possible variability in biosignals:

Variability in the patient population : age, gender, height, diseased or healthy, different sleep stage proportion.

Possible variability in biosignals:

- Variability in the patient population : age, gender, height, diseased or healthy, different sleep stage proportion.
- Variability in **recording and preprocessing** : different sensors, sensor positions, impedance, noise, interference, sampling rates, filtering.

Possible variability in biosignals:

- Variability in the patient population : age, gender, height, diseased or healthy, different sleep stage proportion.
- Variability in **recording and preprocessing** : different sensors, sensor positions, impedance, noise, interference, sampling rates, filtering.
- Variability in data interpretation by specialist : different scoring criteria, subjectivity, tiredness.

Possible variability in biosignals:

- Variability in the patient population : age, gender, height, diseased or healthy, different sleep stage proportion.
- Variability in **recording and preprocessing** : different sensors, sensor positions, impedance, noise, interference, sampling rates, filtering.
- Variability in **data interpretation by specialist** : different scoring criteria, subjectivity, tiredness.

 \rightarrow **Domain Adaptation** problem.

Sleep Staging

Classification problem with five classes: Wake, N1, N2, N3, REM

Frequency helps to classify sleep stage

Experimental setup

Four different datasets: **ABC**, **CHAT**, **HOMEPAP** and **MASS**

- Around 300 subjects in total
- One **domain** = One **subject**
- Seven EEG channels
- Use CNN architecture from¹

¹Chambon et. al., 2018

Results on Sleep data

Results on Sleep data

How to use DA?

Skada¹ is a **Python** library to **easily** use DA methods.

Homogeneous API for all DA methods (Shallow and Deep learning).

Sklearn-like API with estimator class (.fit, .predict, ...), pipeline, grid search ...

DA scorer to validate hyper-parameters without using target label.

¹Gnassounou et. al., 2024

Data format in Skada

 \blacksquare X \rightarrow 2D array of shape (n_samples, n_features)

```
\blacksquare y \rightarrow 1D array of shape (n_samples,)
```

```
sample_domain \rightarrow 1D array of shape (n_samples,) giving the domain of each sample
```

1	from <pre>skada.datasets import make_shifted_datasets</pre>
2	
3	X, y, sample_domain = make_shifted_datasets(
4	<pre>20, 20, shift='covariate_shift', random_state=42</pre>
5)

All shift are available in make_shifted_datasets function

T. Gnassounou

Shallow DA in Skada

- Initialize the estimator
- Fit the model
- Don't forget to give the sample domain

1	from skada import LinOT
2	
3	estimator = LinOT()
4	<pre>estimator.fit(X, y, sample_domain=sample_domain)</pre>

 \sim 20 shallow methods available in Skada

Pipeline DA in Skada

Can be used with **Pipeline**

1	from skada import make_da_pipeline
2	from skada import LinOTAdapter, GaussianReweightAdapter
3	from sklearn.linear_model import LogisticRegression
4	
5	pipeline = Pipeline(
6	LinOTAdapter(),
7	LogisticRegression()
8)
9	<pre>pipeline.fit(X, y, sample_domain=sample_domain)</pre>

Possibility to mixed DA adapters

1	pipeline = Pipeline(
2	LinOTAdapter(),
3	GaussianReweightAdapter()
4	LogisticRegression()
5)

DA scorer in Skada

Possibility to use cross_val_score with DA scorers

DA scorers are used to validate the hyperparameters without using the target labels

1	from skada.scorers import ImportanceWeightedScorer
2	
3	<pre>scorer = ImportanceWeightedScorer()</pre>
4	<pre>score = cross_val_score(pipeline, X, y, sample_domain=sample_domain,</pre>
	\hookrightarrow scoring=scorer)

6 DA scorers available in Skada

Deep DA method in Skada

Use Skorch \rightarrow Pytorch wrapper for Sklearn

Give an architecture and hyperparameters

```
from skada.deep import DeepCoral
          from skada.deep.modules import ToyCNN
2
3
          model = DeepCoral(
4
              ToyCNN(),
5
              batch_size=32,
6
              max_epochs=5,
\overline{7}
              lr=1e-3,
8
              reg=1,
9
              layer_name="feature_extractor",
10
11
          model.fit(X, y, sample_domain=sample_domain)
12
```

\sim 10 Deep DA methods available in Skada

Conclusion

Distribution shift is a challenging problem in biosignals

- Alignment of the cross-PSD is a powerful tool to tackle the problem
- Try Skada to easily use DA methods
- Don't hesitate to contribute to the library!

