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ABSTRACT

Distribution shift poses a significant challenge in machine learning, particularly in biomedical
applications using data collected across different subjects, institutions, and recording devices, such as
sleep data. While existing normalization layers, BatchNorm, LayerNorm and InstanceNorm, help
mitigate distribution shifts, when applied over the time dimension they ignore the dependencies
and auto-correlation inherent to the vector coefficients they normalize. In this paper, we propose
PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep
learning models for signals. Notably, the proposed method operates as a test-time domain adaptation
technique, addressing distribution shifts without additional training. Evaluations with architectures
based on U-Net or transformer backbones trained on 10K subjects across 10 datasets, show that
PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being 4-times more
data-efficient than BatchNorm.

1 Introduction

Data Shift in Physiological Signals Machine learning techniques have achieved remarkable success in various
domains, including computer vision, biology, audio processing, and language understanding. However, these methods
face significant challenges when there are distribution shifts between training and evaluation datasets [1]. For example,
in biological data, such as electroencephalography (EEG) signals, the distribution of the data can vary significantly.
Indeed, data is collected from different subjects, electrode positions, and recording conditions. This paper focuses on
sleep staging, a clinical task that consists in classifying periods of sleep in different stages based on EEG signals [2].
Depending on the dataset, the cohort can be composed of different age groups, sex repartition, health conditions, and
recording conditions [3, 4, 5]. Such variability brings shift in the distribution making it challenging for the model to
generalize to unseen datasets.

Normalization to Address Data Shift Normalization layers are widely used in deep learning to improve training
stability and generalization. Common layers include BatchNorm [6], LayerNorm [7], and InstanceNorm [8], which
respectively compute statistics across the batch, normalize across all features within each sample, and normalize each
channel independently within a sample. Some normalization methods target specific tasks, such as EEG covariance
matrices [9] or time-series forecasting [10], but they do not fully address spectral distribution shifts reflected in the
temporal auto-correlations of signals. In sleep staging, a simple normalization is often applied as preprocessing, e.g.,
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Figure 1: Description of normalization layers. The input shape is (N, c, ℓ) with batch size N , channels c, and signal
length ℓ. BatchNorm estimates the mean µ̂ and variance σ̂2 over batch and time, and learns parameters (γ, β) to
normalize the input. PSDNorm estimates PSDs P̂ over time and accounts for local temporal correlations. It computes
the barycenter PSD P̂, updates it via a running Riemannian barycenter (6), and applies the filter Ĥ to normalize the
input. The hyperparameter F controls the extent of temporal correlation considered, thereby adjusting the strength of
the normalization.

standardizing signals over entire nights [11] or short temporal windows [12]. Recent studies [13, 14] highlight the
importance of considering temporal correlation and spectral content in normalization, proposing Temporal Monge
Alignment (TMA), which aligns Power Spectral Density (PSD) to a common reference using Monge mapping, going
beyond simple z-score normalization. However, these methods remain preprocessing steps that cannot be inserted as
layers in the network architecture as it is done with BatchNorm, LayerNorm or InstanceNorm.

Domain Generalization Sleep staging has been addressed by various neural network architectures, which process
raw signals [12, 15, 16], spectrograms [17, 18], or both [19]. More recent approaches involve transformer-based models
that handle multimodal [20], spectrogram [21], or heterogeneous inputs [22], offering improved modeling of temporal
dependencies. However, most existing models are trained on relatively small cohorts, typically consisting of only a
few hundred subjects, which limits their ability to generalize to diverse clinical settings. Notable exceptions include
U-Sleep [15], which was trained on a large-scale dataset and incorporates BatchNorm layers to mitigate data variability,
and foundational models [23, 24, 25] that achieve strong generalization from vast amount of data but require significant
computational resources and are challenging to adapt without fine-tuning. Our focus is on developing smaller, efficient
models that balance good generalization with ease of training and deployment in clinical practice.

Test-time Domain Adaptation Domain generalization involves training models on data from multiple domains
without using domain labels, with the goal of achieving broad generalization. In contrast, domain adaptation (DA)
utilizes domain information to improve performance by aligning source and target distributions during training [26, 27].
While DA methods have been applied to address domain shifts in sleep staging [28], they typically require access to
source data for each new target, which can be limiting. Test-time DA offers a more flexible approach, adapting the
model during inference without requiring access to source data [13]. This makes test-time DA particularly well-suited
for clinical applications where retraining or data sharing is impractical.

Contributions In this work, we introduce the PSDNorm deep learning layer, a novel approach to address distribution
shifts in machine learning for signals. PSDNorm leverages Monge Mapping to incorporate temporal context and
normalize feature maps effectively. As a test-time DA method, it adapts to distribution shifts during inference without
extra training or source domain access. Compared to a normalization like LayerNorm or InstanceNorm, PSDNorm
exploits the sequential nature of the intermediate layer representations as illustrated in Figure 1. We evaluate PSDNorm
through extensive experiments on 10 sleep datasets. This evaluation covers 10M of samples across 10K subjects,
using a leave-one-dataset-out (LODO) protocol with 3 different random seeds. To the best of our knowledge, such a
large-scale and systematic evaluation has never been conducted before. PSDNorm achieves state-of-the-art performance
and requires 4 times fewer labeled data to match the accuracy of the best baseline. Results highlight the potential of
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PSDNorm as a practical and efficient solution for tackling domain shifts in signals.
The paper is structured as follows: Section 2 discusses existing normalization layers and pre-processing. Section 3
introduces PSDNorm, followed by numerical results in Section 4.

Notations Vectors are denoted by small cap boldface letters (e.g., x), matrices by large cap boldface letters (e.g.,
X). The element-wise product, power of n and division are denoted ⊙, ·⊙n and ⊘, respectively. J1,KK denotes
{1, . . . ,K}. The absolute value is |.|. The discrete circular convolution along the temporal axis operates row-wise as,
∗ : Rc×ℓ × Rc×F → Rc×ℓ for ℓ ≥ F . vec : Rc×ℓ → Rcℓ concatenates rows of a time series into a vector. xl = [x]l
refers to the lth element of x, and Xl,m = [X]l,m denotes the element of X at the lth row and mth column. X∗ and X⊤

are the conjugate and the transpose of X, respectively. diag puts the elements of a vector on the diagonal of a matrix. ⊗
is the Kronecker product. 1c is the vector of ones of size c.

2 Related Works

In this section, we first review fundamental concepts of normalization layers. Then, we recall the Temporal Monge
Alignment (TMA) method [13] that aligns the PSD of signals using optimal transport.

Normalization Layers Normalization layers enhance training and robustness in deep neural networks. The most
common are BatchNorm [6], InstanceNorm [8], and LayerNorm [7]. BatchNorm normalizes feature maps using
batch and time statistics, ensuring zero mean and unit variance. The output is adjusted with learnable parameters.
InstanceNorm normalizes each channel per sample using its own statistics, independent of the batch (see Fig. 1).
Popular in time-series forecasting, it is used in RevIN [10], which reverses normalization after decoding. LayerNorm
normalizes across all channels and time steps within each sample, with learnable scaling and shifting. While these
normalization layers are widely employed, they operate on vectors ignoring statistical dependence and autocorrelation
between their coefficients, which are prevalent when operating on time-series. To address this limitation, the Temporal
Monge Alignment (TMA) [13, 14] was introduced as a pre-processing step to align temporal correlations by leveraging
the Power Spectral density (PSD) of multivariate signals using Monge Optimal Transport mapping.

Gaussian Periodic Signals Consider a multivariate signal X ≜ [x1, . . . ,xc]
⊤ ∈ Rc×ℓ of sufficient length. A standard

assumption is that this signal follows a centered Gaussian distribution where sensors are uncorrelated and signals are
periodic. This periodicity and uncorrelation structure implies that the signal’s covariance matrix is block diagonal, with
each block having a circulant structure. A fundamental property of symmetric positive definite circulant matrices is
their diagonalization [29] with real and positive eigenvalues in the Fourier basis Fℓ ∈ Cℓ×ℓ of elements

[Fℓ]l,l′ ≜
1√
ℓ
exp

(
−2iπ (l − 1)(l′ − 1)

ℓ

)
, (1)

where l, l′ ∈ J1, ℓK . Hence, we have vec(X) ∼ N (0,Σ) with Σ block-diagonal,

Σ = (Ic ⊗ Fℓ) diag (vec(P)) (Ic ⊗ F∗
ℓ ) ∈ Rcℓ×cℓ, (2)

where P ∈ Rc×ℓ contains positive entries corresponding to the Power Spectral Density of each sensor. In practice,
since we only have access to a single realization of the signal, the PSD is estimated with only F ≪ ℓ frequencies,
i.e., P ∈ Rc×F . This amounts to considering the local correlation of the signal and neglecting the long-range
correlations.

Power Spectral Density Estimation The Welch estimator [30] computes the PSD of a signal by averaging the
squared Fourier transform of overlapping segments of the signal. Hence, the realization of the signal X ∈ Rc×ℓ is
decimated into overlapping segments {X(1), . . . ,X(L)} ⊂ Rc×F to estimate the PSD. The Welch estimator is defined
as

P̂ ≜
1

L

L∑
l=1

∣∣∣((1cw
⊤)⊙X(l)

)
F∗

F

∣∣∣⊙2

∈ Rc×F , (3)

where w ∈ RF is the window function such that ∥w∥2 = 1.

F -Monge Mapping LetN (0,Σ(s)) andN (0,Σ(t)) be source and target centered Gaussian distributions respectively
with covariance matrices following the structure (2) and PSDs denoted by P(s) and P(t) ∈ Rc×F . Given a signal
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X ∈ Rc×ℓ such that vec(X) ∼ N (0,Σ(s)), the F -Monge mapping as defined by [13, 14] is

mF

(
X,P(t)

)
≜ X ∗H ∈ Rc×ℓ, where H ≜

1√
F

(
P(t) ⊘P(s)

)⊙ 1
2

F∗
F ∈ Rc×F . (4)

In this case, F controls the alignment between the source and target distributions. Indeed, if F = ℓ, then the F -Monge
mapping is the classical Monge mapping between Gaussian distributions and the source signal has its covariance matrix
equal to Σ(t) after the mapping. If F = 1, then each sensor is only multiplied by a scalar.

Gaussian Wasserstein Barycenter For Gaussian distributions admitting the decomposition (2), the Wasserstein
barycenter [31] admits an elegant closed-form solution. Consider K centered Gaussian distributions admitting the
decomposition (2) of PSDs P(1), . . . ,P(K). Their barycenter is also a centered Gaussian distributionN (0,Σ) admitting
the decomposition (2) with PSD

P ≜

(
1

K

K∑
k=1

P(k)⊙
1
2

)⊙2

∈ Rc×F . (5)

Temporal Monge Alignement TMA is a pre-processing method that aligns the PSD of multivariate signals using the
F -Monge mapping. Given a source signal Xs and a set of target signals Xt = {X(1)

t , . . . ,X
(K)
t }, the TMA method

uses the F -Monge mapping between the source and the Wasserstein barycenter of the target signals. Hence, it simply
consists of 1) estimating the PSD of all the signals, 2) computing the Wasserstein barycenter of the target signals, and 3)
applying the F -Monge mapping to the source signal. TMA, as a preprocessing method, is inherently limited to handling
PSD shifts in the raw signals and cannot address more complex distributional changes in the data. This limitation
highlights the need for a layer that can effectively capture and adapt to these complex variations during learning and
inside deep learning models.

3 PSDNorm Layer

The classical normalization layers, such as BatchNorm or InstanceNorm do not take into account the temporal
autocorrelation structure of signals. They treat each time sample in the intermediate representations independently. In
this section, we introduce the PSDNorm layer that aligns the PSD of each signal onto a barycenter PSD within the
architecture of a deep learning model.

PSDNorm as a Drop-in Replacement As discussed in Section 2, BatchNorm and InstanceNorm layers are commonly
applied after each non-linearity in deep learning models, such as U-Time, to normalize feature maps. In contrast,
PSDNorm offers a novel approach by aligning the PSD of feature maps to a barycenter PSD, providing a powerful
alternative to classical normalization layers. Designed as a drop-in replacement, PSDNorm is optimized for modern
hardware accelerators like GPUs, ensuring efficient execution. Once the deep-learning model is trained, PSDNorm
operates as a test-time domain adaptation technique, allowing it to adapt to new data without additional training or
access to training data. We define the normalized feature map as G̃ ≜ PSDNorm(G). The following sections introduce
the core components of PSDNorm and its implementation.

3.1 Core Components of the layer

In the following, we formally define PSDNorm and present each of its three main components: 1) PSD estimation, 2) run-
ning Riemannian barycenter estimation, and 3) F -Monge mapping computation. Given a batch B = {G(1), . . . ,G(N)}
of N pre-normalization feature maps, PSDNorm outputs a normalized batch B̃ = {G̃(1), . . . , G̃(N)} with normalized
PSD. Those three steps are detailed in the following and illustrated in the right part of Figure 1.

PSD Estimation First, the estimation of the PSD of each feature map is performed using the Welch method. The
per-channel mean µ̂(j) is computed for each feature map G(j) as µ̂(j) ≜ 1

ℓ

∑ℓ
l=1

[
G(j)

]
:,l
∈ Rc . Then, the PSD

of the centered feature map G(j) − µ̂(j)1⊤
ℓ , denoted P̂(j), is estimated as described in Equation (3). This centering

step is required as feature maps are typically non-centered due to activation functions and convolution biases but they
are assumed to have a stationary mean. The Welch estimation involves segmenting the centered feature map into
overlapping windows, computing the Fourier transform of each window and then averaging them.
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Figure 2: Description of the running Riemanian
barycenter. The barycenter of the batch P̂B is esti-
mated from the PSD of each batch sample. Then the
running Riemanian barycenter is updated through an
exponential average along the geodesic (- -), parame-
terized by α ∈ [0, 1].

Geodesic and Running Riemanian Barycenter The PSD-
Norm aligns the PSD of each feature map to a barycenter PSD.
This barycenter is computed during training by interpolating be-
tween the batch Wasserstein barycenter and the current running
Riemanian barycenter using the geodesic associated with the
Bures metric [32]. The batch barycenter is first computed from
the current batch PSDs

{
P̂(1), . . . , P̂(N)

}
using Equation (5).

To ensure gradual adaptation, the running barycenter is updated
via an exponential geodesic average with α ∈ [0, 1]:

P̂←

(
(1− α)P̂

⊙ 1
2
+ αP̂

⊙ 1
2

B

)⊙2

∈ Rc×F . (6)

A proof of the geodesic is provided in Appendix A.1.

PSD Adaptation withF -Monge Mapping The final step of
the PSDNorm is the application of the F -Monge mapping to
each feature map after subtracting the per-channel mean. Indeed, for all j ∈ J1, NK , it is defined as

G̃(j) = mF

(
G(j) − µ̂(j)1⊤

ℓ , P̂
)
=
((

G(j) − µ̂(j)1⊤
ℓ

)
∗ Ĥ(j)

)
∈ Rc×ℓ (7)

where Ĥ(j) is the Monge mapping filter computed as

Ĥ(j) ≜
1√
F

(
P̂⊘ P̂(j)

)⊙ 1
2

F∗
F ∈ Rc×f (8)

where P̂(j) is the estimated PSD of G(j) − µ̂(j)1⊤
ℓ .

3.2 Implementation details
Algorithm 1 Forward pass of PSDNorm

1: Input: Batch B =
{
G(1), . . . ,G(N)

}
, running barycenter P̂,

filter-size F , momentum α, training flag
2: Output: Normalized batch

{
G̃(1), . . . , G̃(N)

}
3: for j = 1 to N do
4: µ̂(j) ←Mean estimation
5: P̂(j) ← PSD est. from G̃(j) − µ̂(j)1⊤

ℓ with eq. (3)
6: end for
7: if training then
8: P̂B ← Batch bary. from {P̂(j)}j with eq. (5)

9: P̂← Running bary. up. from P̂, P̂B with eq. (6)
10: end if
11: for j = 1 to N do
12: Ĥ(j) ← Filter estimation from P̂(j), P̂ with eq. (8)
13: G̃(j) ← F -Monge mapping with eq. (7)
14: end for

Overall Algorithm The forward computa-
tion of the proposed layer is outlined in Al-
gorithm 1. At train time, the PSDNorm per-
forms three main operations: 1) PSD esti-
mation, 2) running Riemannian barycenter
update, and 3) Monge mapping application.
At test time, the PSDNorm operates simi-
larly, except it does not update the running
barycenter. The PSDNorm is fully differen-
tiable and can be integrated into any deep
learning model. Similarly to classical nor-
malization layers, a stop gradient operation is
applied to the running barycenter to prevent
the backpropagation of the gradient compu-
tation through the barycenter. PSDNorm has
a unique additional hyperparameter F which
is the filter size. It controls the alignment
between each feature map and the running
barycenter PSD and it is typically chosen in
our experiments between 1 and 17. In prac-
tice, the Fourier transforms are efficiently computed using the Fast Fourier Transform (FFT) algorithm. Because of the
estimation of PSDs, the complexity of the PSDNorm, both at train and test times, is O(NcℓF log(F )), where N is the
batch size, c the number of channels, ℓ the signal length, and F the filter size.

PSDNorm as a generalization of InstanceNorm InstanceNorm applies a per-channel z-score over time, subtracting
the mean and dividing by the standard deviation—equivalent to whitening under an i.i.d. assumption over time. In
contrast, PSDNorm explicitly accounts for temporal structure by estimating the PSD and whitening/re-coloring in the
frequency domain. InstanceNorm is recovered as a special case of PSDNorm by setting the filter size to F = 1 and
using the identity as the re-coloring transform instead of the barycentric PSD.
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4 Numerical Experiments

In this section, we evaluate the proposed method through a series of experiments designed to highlight its effectiveness
and robustness on the clinically relevant task of sleep staging. We first describe the datasets and training setup employed,
followed by a performance comparison with existing normalization techniques. Next, we assess the efficiency of
PSDNorm by training over varying numbers of subjects per dataset. Finally, we analyze the robustness of PSDNorm
against domain shift by focusing on subject-wise performance and different architectures. The code will be available on
GitHub upon acceptance. The anonymized code is available in the supplementary material. All numerical experiments
were conducted using a total of 1500 GPU hours on NVIDIA H100 GPUs.

4.1 Experimental Setup

Table 1: Characteristics of the datasets.

Dataset Subj. Rec. Age ± std Sex (F/M)
ABC 44 117 48.8 ± 9.8 43%/57%
CCSHS 515 515 17.7 ± 0.4 50%/50%
CFS 681 681 41.7 ± 20.0 55%/45%
HPAP 166 166 46.5 ± 11.9 43%/57%
MROS 2101 2698 76.4 ± 5.5 0%/100%
PHYS 70 132 58.8 ± 22.0 33%/67%
SHHS 5730 8271 63.1 ± 11.2 52%/48%
MASS 61 61 42.5 ± 18.9 55%/45%
CHAT 1230 1635 6.6 ± 1.4 52%/48%
SOF 434 434 82.8 ± 3.1 100%/0%
Total 11032 14710 – –

Datasets To evaluate the effect of normalization lay-
ers, we use ten datasets of sleep staging described in Ta-
ble 1. ABC [33], CCSHS [34], CFS [35], HPAP [36],
MROS [37], SHHS [4], CHAT [5], and SOF [38] are
publicly available sleep datasets with restricted access
from National Sleep Research Resource (NSRR) [39].
PHYS [40] and MASS [3] are two other datasets publicly
available. Every 30 s epoch is labeled with one of the
five sleep stages: Wake, N1, N2, N3, and REM. These
datasets are unbalanced in terms of age, sex, number of
subjects, and have been recorded with different sensors in
different institutions which makes the sleep staging task
challenging. We now describe the pre-processing steps
and splits of the datasets.

Data Pre-processing We follow a standard pre-
processing pipeline used in the field [41, 42]. The datasets
vary in the number and type of available EEG and electrooculogram (EOG) channels. To ensure consistency, we use
two bipolar EEG channels, as some datasets lack additional channels. For dataset from NSRR, we select the channels
C3-A2 and C4-A1. For signals from Physionet and MASS, we use the only available channels Fpz-Cz and Pz-Oz.
The EEG signals are low-pass filtered with a 30 Hz cutoff frequency and resampled to 100 Hz. All data extraction and
pre-processing steps are implemented using MNE-BIDS [43] and MNE-Python [44].

Leave-One-Dataset-Out (LODO) Setup and Balancing We evaluate model performance using a leave-one-dataset-
out (LODO) protocol: in each fold, one dataset is held out for testing, and the model is trained on the union of the
remaining datasets. From the training data, 80% of subjects are used for training and 20% for validation, which is used
for early stopping. The full held-out dataset is used for testing. To assess performance in low-data regimes, we also
evaluate a variant in which we subsample at most N subjects per dataset, promoting balanced contributions across
training sources. We refer to this configuration as balanced@N , with N ranging from 40 to 400. The exact number of
subjects per dataset in each case is listed in Appendix Table 3.

Architecture and Training Sleep staging has inspired a variety of neural architectures, from early CNN-based
models [41, 42, 19] to recent attention-based approaches [21, 17, 20]. We evaluate two architectures: U-Sleep [45, 15],
a state-of-the-art temporal CNN model designed for robustness and large-scale training, and a newly introduced
architecture, CNNTransformer. CNNTransformer combines a lightweight convolutional encoder with a Transformer
applied to epoch-level embeddings. It is specifically tailored for two-channel EEG and designed to scale efficiently to
large datasets, while remaining minimal in implementation (under 100 lines of code) and training cost (Appendix A.3).
Its design draws inspiration from recent transformer-based models for time series [46], with an emphasis on simplicity
and practicality.

We use the Adam optimizer [47] with a learning rate of 10−3 to minimize the weighted cross-entropy loss, where
class weights are computed from the training set distribution. Training is performed with a batch size of 64, and early
stopping is applied based on validation loss with a patience of 3 epochs. Each input corresponds to a sequence of
17’30s, with a stride of 10’30s between sequences along the full-night recording.

Evaluation At test time, the model similarly processes sequences of 17’30s with a stride of 10’30s. Performance
is evaluated using the balanced accuracy score (BACC), computed on the central 10’30s of each prediction window.
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Table 2: Balanced Accuracy (BACC) scores on the left-out datasets. The top section reports results in the large-
scale setting (using all available subjects), while the bottom section presents results in the medium-scale setting
(balanced@400). For each row, the best score is highlighted in bold, and standard deviations reflect training variability
across 3 random seeds.

BatchNorm LayerNorm InstanceNorm PSDNorm(F=5) PSDNorm(F=9) PSDNorm(F=17)

A
ll

su
bj

ec
ts

ABC 78.49 ± 0.42 77.94 ± 0.31 78.83 ± 0.59 78.56 ± 0.67 78.73 ± 0.32 78.60 ± 0.28
CCSHS 88.79 ± 0.21 87.51 ± 0.77 88.75 ± 0.04 88.56 ± 0.36 88.48 ± 0.07 88.52 ± 0.19
CFS 84.97 ± 0.37 84.29 ± 0.67 85.73 ± 0.29 85.42 ± 0.09 85.25 ± 0.19 85.28 ± 0.12
CHAT 64.72 ± 3.94 64.36 ± 0.40 68.86 ± 2.49 70.57 ± 1.24 70.36 ± 2.22 70.71 ± 2.15
HOMEPAP 76.39 ± 0.29 75.23 ± 0.78 76.70 ± 0.35 76.72 ± 0.27 76.93 ± 0.10 77.02 ± 0.32
MASS 73.71 ± 0.62 71.39 ± 3.00 72.12 ± 0.70 72.51 ± 1.68 71.34 ± 2.68 71.61 ± 0.71
MROS 81.30 ± 0.25 80.44 ± 0.29 81.49 ± 0.18 81.57 ± 0.34 81.35 ± 0.17 81.30 ± 0.13
PhysioNet 76.13 ± 0.57 75.12 ± 0.22 76.15 ± 0.52 75.96 ± 1.02 76.35 ± 0.27 76.02 ± 0.47
SHHS 77.97 ± 1.46 75.98 ± 0.48 79.05 ± 0.89 79.14 ± 1.01 79.33 ± 0.62 79.12 ± 0.11
SOF 81.33 ± 0.54 81.82 ± 0.79 81.98 ± 0.22 82.50 ± 0.34 82.15 ± 1.00 81.94 ± 0.65
Mean 78.38 ± 0.47 77.41 ± 0.28 78.97 ± 0.11 79.15 ± 0.14 79.03 ± 0.10 79.01 ± 0.36

B
al

an
ce

d@
40

0

ABC 78.26 ± 1.33 75.29 ± 0.81 78.73 ± 0.42 78.18 ± 0.68 78.18 ± 0.91 77.76 ± 1.00
CCSHS 87.42 ± 0.16 85.20 ± 0.48 87.62 ± 0.42 87.58 ± 0.30 87.35 ± 0.52 87.62 ± 0.48
CFS 84.32 ± 0.57 81.66 ± 1.36 84.72 ± 0.33 84.29 ± 0.36 84.06 ± 0.10 84.46 ± 0.06
CHAT 66.55 ± 0.88 61.19 ± 1.16 64.43 ± 4.41 70.28 ± 1.70 68.11 ± 3.94 69.88 ± 0.46
HOMEPAP 75.25 ± 0.50 74.86 ± 0.25 76.47 ± 0.63 76.83 ± 0.61 76.61 ± 0.74 76.49 ± 0.45
MASS 70.00 ± 1.91 68.56 ± 3.33 71.52 ± 1.13 72.77 ± 1.09 73.07 ± 1.30 72.23 ± 2.40
MROS 80.37 ± 0.20 78.05 ± 0.22 80.28 ± 0.21 80.26 ± 0.11 80.32 ± 0.22 80.70 ± 0.42
PhysioNet 75.81 ± 0.13 71.82 ± 2.12 74.68 ± 0.55 74.82 ± 2.11 73.77 ± 1.73 75.09 ± 0.97
SHHS 76.44 ± 0.92 75.12 ± 0.39 78.68 ± 0.37 78.88 ± 0.68 77.28 ± 0.91 78.41 ± 0.49
SOF 81.08 ± 1.14 78.70 ± 0.50 80.68 ± 1.38 79.49 ± 0.41 81.44 ± 0.97 81.07 ± 0.66
Mean 77.55 ± 0.34 75.05 ± 0.28 77.78 ± 0.46 78.34 ± 0.42 78.02 ± 0.67 78.37 ± 0.38

Each experiment is repeated three times with different random seeds, and we report the mean and standard deviation of
BACC.

Normalization Strategies We compare the proposed PSDNorm with three normalization strategies: BatchNorm,
LayerNorm, and InstanceNorm. Note that InstanceNorm corresponds to a special case of PSDNorm with F = 1
and a fixed identity mapping instead of a learned running barycenter. In the following experiments, the BatchNorm
layers in the first three convolutional layers are replaced with either PyTorch’s default implementations of LayerNorm,
InstanceNorm [48], or PSDNorm. To preserve the receptive field, the filter size F of PSDNorm is used in the first layer
and progressively halved in the following ones. We fix the momentum α to 10−2.

4.2 Numerical Results

This section presents results from large-scale sleep stage classification experiments. The analysis begins with a
comparison of PSDNorm against standard normalization layers—BatchNorm, LayerNorm, and InstanceNorm—on
the full datasets. Then, the data efficiency of each method is evaluated under limited training data regimes. Finally,
robustness to distribution shift is assessed via subject-wise performance across multiple neural network architectures.

Performance Comparison on Full Datasets Table 2 (top) reports the LODO BACC of U-Sleep across all datasets,
averaged over three random seeds. PSDNorm consistently outperforms all baseline normalization layers—BatchNorm,
LayerNorm, and InstanceNorm—achieving the highest mean BACC of 79.15%, which exceeds BatchNorm (78.38%),
InstanceNorm (78.97%), and LayerNorm (77.41%) by at least one standard deviation. This performance holds across
tested filter sizes, with PSDNorm reaching 79.03% for F=9 and 79.01% for F=17. In total, PSDNorm ranks first on 6
out of the 10 datasets. On the challenging CHAT dataset, where all methods struggle, PSDNorm with F=5 outperforms
all other normalizations by more than 2 percentage points, highlighting its robustness under strong distribution shifts.
Although InstanceNorm is a strong baseline—outperforming BatchNorm and LayerNorm by at least one standard
deviation on average—it is consistently surpassed by PSDNorm in average performance. In contrast, LayerNorm
underperforms across the board, achieving the lowest average BACC and never ranking first, confirming its limited
suitability for this task.
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Figure 3: Critical Difference (CD) diagram for two archi-
tectures on datasets balanced @400. Average ranks across
datasets and subjects for USleep and CNNTransformer. Black
lines connect methods that are not significantly different.

Efficiency: Performance with 4× Less Data The
PSDNorm layer improves model performance when
trained on the full dataset (∼10000 subjects), but such
large-scale data availability is not always the case.
In many real-world scenarios—such as rare disease
studies, pediatric populations, or data collected in
constrained clinical settings—labeled recordings are
scarce, expensive to annotate, or restricted due to pri-
vacy concerns. Evaluating model robustness under
these constraints is therefore essential. To this end,
we train all models using the balanced@400 setup,
which reduces the training data by a factor of 4 com-
pared to the full-data setting. In this lower-data regime,
PSDNorm continues to outperform all baseline normal-
ization strategies on 6 out of 10 datasets and achieves
higher average BACC across all tested values of F . The performance improvement of PSDNorm over the best baseline
is more pronounced in this setting: for F=5, the BACC gain reaches +0.56%, compared to +0.18% in the full-data
setting. Again, the gains exceed one standard deviation. To assess statistical significance, we conducted a critical
difference (CD) test [49]. Figure 3 (top) reports the average rank of each method and the corresponding statistical
comparisons. The results confirm that PSDNorm significantly outperforms the baselines, underscoring the value of
incorporating temporal structure into normalization for robust and data-efficient generalization. The same trend is
observed for U-Sleep trained on all subjects (see in Appendix Figure 6). The following experiments focus on the
balanced@400 setup.

Robustness Across Architectures PSDNorm is a plug-and-play normalization layer that can be seamlessly integrated
into various neural network architectures. To demonstrate this flexibility, we evaluate its performance on both the
U-Sleep and CNNTransformer models. Figure 3 reports the average rank of each normalization method across datasets
and subjects for both architectures using datasets balanced@400. In both architectures, PSDNorm with F=5 achieves
the best overall ranking and demonstrates statistically significant improvements over both BatchNorm, LayerNorm and
InstanceNorm. Notably, it is also the only method to rank among the top two across both architectures. The results
confirm that PSDNorm generalizes well beyond a single architecture and can provide consistent improvements in
diverse modeling setups. InstanceNorm performs competitively in some cases but is never significantly better than
PSDNorm. The figure also illustrates that PSDNorm with F=17 does not yield additional benefit in this medium-scale
setting, further supporting the conclusion that moderate temporal context is sufficient at this data scale. Detailed
numerical scores for CNNTransformer are reported in the supplementary material (Table 7).

BatchNorm
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Figure 4: Performance of PSDNorm and BatchNorm with varying
training set sizes. The BACC score is plotted against the number of
training subjects used with U-Sleep.

Sensitivity to Filter Size The choice of F
in PSDNorm controls the intensity of the nor-
malization: larger F provide stronger normal-
ization, while smaller F allow more flexibil-
ity in the model. In Figure 4, we evaluate its
impact across different training set sizes and
observe a clear trend: when trained on fewer
subjects, larger filter sizes yield better perfor-
mance (i.e., F = 17), whereas smaller filter
sizes are more effective with larger datasets
(i.e., F = 5). This suggests that with lim-
ited data, stronger normalization helps pre-
vent overfitting, while with more data, a more
flexible model is preferred. On average, PSD-
Norm with F = 5 offers a good compromise,
achieving one of the best performances across
all training set sizes.
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and CHAT (balanced @400). Blue dot means improve-
ment with PSDNorm.

Performance on the most challenging subjects Perfor-
mance variability across subjects is a key challenge in
biomedical applications where ensuring consistently high
performance—even for the most challenging subjects—is
critical. To highlight the robustness of PSDNorm, Figure 5
presents a scatter plot of subject-wise BACC scores com-
paring BatchNorm or InstanceNorm vs. PSDNorm across
two selected target datasets. CHAT and MASS are two
challenging datasets, where the prediction performance is
significantly lower than the other datasets. For CHAT, most
of the dots are below the diagonal, indicating that PSDNorm
improves performance for 91% of subjects against Batch-
Norm and 99% of subjects against InstanceNorm, with the
largest gains observed for the hardest subjects, reinforcing
its ability to handle challenging cases. For MASS, PSD-
Norm improves performance for 75% of subjects against
BatchNorm and 69% against InstanceNorm. This demon-
strates that PSDNorm is not only effective in improving
overall performance but also excels in enhancing the perfor-
mance of the most challenging subjects.

5 Conclusion, Limitations, and Future Work

This paper introduced PSDNorm, a normalization layer that aligns the power spectral density (PSD) of each signal
to a geodesic barycenter. By leveraging temporal correlations, PSDNorm offers a principled alternative to standard
normalization layers. Experiments on large-scale sleep staging datasets show that PSDNorm consistently improves
performance, robustness, and data efficiency, especially under domain shift and limited-data settings—outperforming
BatchNorm, LayerNorm, and InstanceNorm across architectures.
While the results are promising, some limitations remain. PSDNorm introduces a filter size hyperparameter (F ) that
controls normalization strength; although we provide default values that perform well across datasets, selecting it
automatically in adaptive settings could be challenging.
Despite these limitations, PSDNorm is flexible and easy to integrate into existing models. Future work includes
extending it to other signals such as audio and other biomedical applications.
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A Appendix

A.1 Proof of the Bures-Wasserstein geodesic (6) between covariance matrices of structure (2)

Proposition A.1. Let Σ(s) and Σ(t) be two covariance matrices in RcF×cF following (2). Let us denote P(s) and P(t)

the corresponding PSD matrices. The geodesic associated with the Bures-Wasserstein metric between Σ(s) and Σ(t)

and parameterized by α ∈ [0, 1] is Σ(α) following (2) of PSD

P(α) =

(
(1− α)P(s)⊙ 1

2 + αP(t)⊙ 1
2

)⊙2

.

Proof. From [32], the geodesic associated with the Bures-Wasserstein metric between two covariance matrices Σ(s)

and Σ(t) is given by

γ(α) = (1− α)2Σ(s) + α2Σ(t) + α(1− α)
[
(Σ(s)Σ(t))

1
2 + (Σ(t)Σ(s))

1
2

]
. (9)

where

(Σ(s)Σ(t))
1
2 = Σ(s)

1
2

(
Σ(s)

1
2Σ(t)Σ(s)

1
2

) 1
2

Σ(s)−
1
2 . (10)

Since Σ(s) and Σ(t) diagonalize in the unitary basis Ic ⊗ FF , γ(α) also diagonalizes in this basis. Thus, we only have
to compute the geodesic between the PSD matrices P(s) and P(t) and from now on, all operations are element-wise.
Let P(α) be the PSD of γ(α), we have

P(α) = (1− α)2P(s) + α2P(t) + α(1− α)
[
(P(s) ⊙P(t))⊙

1
2 + (P(t) ⊙P(s))⊙

1
2

]
(11)

= (1− α)2P(s) + α2P(t) + 2α(1− α)(P(s) ⊙P(t))⊙
1
2 (12)

=

(
(1− α)P(s)⊙ 1

2 + αP(t)⊙ 1
2

)⊙2

. (13)

This concludes the proof.

A.2 Balanced datasets

Table 3: Number of samples in the balanced datasets.
Average and standard deviation (across LODO) are
computed over 10 datasets left-out from the training
set.

Balanced datasets Number of subjects
Balanced@40 360 ± 0
Balanced@100 787 ± 19
Balanced@200 1387 ± 63
Balanced@400 2466 ± 157
All subjects 9929 ± 1659

In the main paper, we report results across different training set
sizes. Since the datasets are highly imbalanced (e.g., ABC has
44 subjects, SHHS has 5,730), we create balanced subsets by
randomly selecting up to N subjects per dataset. This avoids
over-representing the largest dataset and ensures greater diver-
sity in the training data. We consider four values of N : 40,
100, 200, and 400. The average number of subjects in each
balanced set is shown in Table 3. Notably, the balanced set with
400 subjects contains roughly four times less data than the full
dataset.

A.3 U-Time: CNN for time series segmentation

U-Time [45, 15] is a convolutional neural network (CNN) in-
spired by the U-Net architecture [54], designed for segmenting
temporal sequences. U-Time maps sequential inputs of arbitrary length to sequences of class labels on a freely chosen
temporal scale. The architecture is composed of several encoder and decoder blocks, with skip connections between
them.

Encoder blocks A single encoder block is composed of a convolutional layer, an activation function, a BatchNorm
layer, and a max pooling layer. First, the convolution is applied to the input signal, followed by the activation function
and the BatchNorm layer. Finally, the max pooling layer downsamples the temporal dimension. In the following, the
pre-BatchNorm feature map is denoted G and the post-BatchNorm feature map G̃, i.e., G̃ ≜ BatchNorm (G). Each
encoder block downsamples by 2 the signal length but increases the number of channels.
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Decoder blocks and Segmentation Head The decoding part of U-Time is symmetrical to the encoding part. Each
decoder block doubles the signal length and decreases the number of channels. It is composed of a convolutional layer,
an activation function, a BatchNorm layer, an upsampling layer and a concatenation layer of the skip connection of
the corresponding encoding block. Finally, the segmentation head applies two convolutional layers with an activation
function in between to output the final segmentation. It should be noted that U-Time employs BatchNorm layers but
other normalization layers, such as LayerNorm [7] or InstanceNorm [8] are possible.

Implementation The architecture is inspired from Braindecode [55]. The implementation is improved to make it
more efficient and faster. One epoch of training takes about 30 min on a single H100 GPU.

Architecture: CNNTransformer

The CNNTransformer is a hybrid architecture designed for multichannel time series classification inspired by transform-
ers for EEG-Data [20, 21, 46, 23]. It combines convolutional feature extraction with long-range temporal modeling via
a Transformer encoder at epoch-level. The model processes an input tensor of shape (B,S,C, T ), where B is the batch
size, S is the number of temporal segments, C is the number of input channels, and T is the number of time samples
per segment. It outputs a tensor of shape (B,nclasses, S), where nclasses is the number of classes and S is the number of
epochs.

The architecture consists of the following components:

• Reshaping: The input is first permuted and reshaped to a 3D tensor of shape (B,C, S · T ) to be compatible
with 1D convolutional layers applied along the temporal dimension.

• CNN-based Feature Extractor: A stack of 10 Conv1D layers, each followed by ELU activation and Batch
Normalization. Some layers use a stride greater than 1 to progressively reduce the temporal resolution. This
block extracts local temporal patterns and increases the representational capacity up to a dimensionality of
dmodel.

• Adaptive Pooling: An AdaptiveAvgPool1D layer reduces the temporal length to a fixed number of steps
(S), independent of the input sequence length. This step ensures a consistent temporal resolution before the
Transformer.

• Positional Encoding: Learnable positional embeddings of shape (1, S, dmodel) are added to the feature
representations to preserve temporal ordering before passing through the Transformer encoder.

• Transformer Encoder: A standard Transformer encoder composed of L layers, each consisting of multi-head
self-attention and a feedforward sublayer. This module models global temporal dependencies across the S
steps.

• Classification Head: After transposing the data to shape (B, dmodel, S), a final 1D convolution with a kernel
size of 1 projects the output to nclasses, yielding predictions for each epoch segment.

The model is trained end-to-end using standard optimization techniques. The use of adaptive pooling and self-attention
enables it to generalize across variable-length inputs while maintaining temporal resolution. A full summary of the
architecture is provided in Table 4.

A.4 Equation for BatchNorm and InstanceNorm

BatchNorm The BatchNorm layer [6] normalizes features maps in a neural network to have zero mean and unit
variance. At train time, given a batch B = {G(1), . . . ,G(N)} ⊂ Rc×ℓ of N pre-BatchNorm feature maps and for all
j,m, l ∈ J1, NK × J1, cK × J1, ℓK , the BatchNorm layer is computed as

G̃
(j)
m,l = γm

G
(j)
m,l − µ̂m√
σ̂2
m + ε

+ βm , (14)

where γ,β ∈ Rc are learnable parameters. The mean and standard deviation µ̂ ∈ Rc and σ̂ ∈ Rc are computed across
the time and the batch,

µ̂m ≜
1

Nℓ

N∑
j=1

ℓ∑
l=1

G
(j)
m,l,

σ̂2
m ≜

1

Nℓ

N∑
j=1

ℓ∑
l=1

(
G

(j)
m,l − µ̂m

)2
.

(15)
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Table 4: Architecture overview of the CNNTransformer model. In pratice, dmodel is set to 768, nhead to 8, and S is 35.
Stage Operation Details Output Shape
Input Raw signal Multichannel EEG signal with S segments and T

time samples per segment
(B,S,C, T )

Reshape Permute & flatten Rearranged as (B,C, S · T ) to process with 1D
convolutions

(B,C, S · T )

Feature Extractor 1D CNN stack 10-layer sequence of Conv1D→ ELU→ Batch-
Norm; includes temporal downsampling via stride

(B, dmodel, T
′)

Temporal Pooling AdaptiveAvgPool1D Downsamples to fixed temporal resolution defined
by S

(B, dmodel, S)

Positional Encoding Learnable embeddings Added to temporal dimension to encode temporal
order before transformer layers

(B, dmodel, S)

Transformer Encoder Multi-head attention 2 Transformer layers with dmodel embedding di-
mension, nhead heads, and feedforward sublayers

(B, dmodel, S)

Classifier Linear projection Projects feature vectors to class logits at each epoch
time step

(B,nclasses, S)

At test time, the mean and variance µ̂ and σ̂ are replaced by their running mean and variance, also called exponential
moving average, estimated during training.

InstanceNorm Another popular normalization is the InstanceNorm layer [8]. During training, InstanceNorm operates
similarly to (14), but the mean and variance are computed per sample instead of across the batch dimension, i.e., µ̂(j)

m

and σ̂
(j)
m are computed for each sample j,

µ̂(j)
m ≜

1

ℓ

ℓ∑
l=1

G
(j)
m,l ,

(σ̂(j)
m )2 ≜

1

ℓ

ℓ∑
l=1

(
G

(j)
m,l − µ̂(j)

m

)2
.

(16)

Hence, each sensor of each sample is normalized independently of the others. At test time, InstanceNorm behaves
identically to its training phase and therefore does not rely on running statistics contrary to the BatchNorm.

A.5 F1 score vs. Balanced Accuracy

In the main paper, we report Balanced Accuracy scores, which account for class imbalance in sleep stage classification.
Prior work, such as the U-Time paper [45], uses the F1 score to evaluate performance. In Table 5, we report F1 scores
on the left-out datasets. These scores are slightly higher than the Balanced Accuracy scores and are comparable to those
reported in the U-Time paper.

Our main findings remain consistent: BatchNorm and InstanceNorm are the strongest baselines and achieve the best
performance on 3 out of 10 datasets. PSDNorm outperforms all other methods on 7 out of 10 datasets. The same trend
holds for the balanced@400 setup, where PSDNorm again outperforms all baselines on 7 datasets, while InstanceNorm
is never the top performer.

These results confirm that our implementation achieves state-of-the-art performance in sleep stage classification.
Moreover, PSDNorm maintains its advantage even in data-limited settings

A.6 Impact of Whitening and Target Covariance

As explained in the main paper, InstanceNorm is a special case of PSDNorm with F = 1 and an identity target
covariance matrix (i.e., whitening). PSDNorm extends this by (i) using temporal context with F > 1, and (ii) mapping
the PSD to a target covariance matrix, such as a barycenter (i.e., colorization).

In this section, we evaluate the impact of whitening on the performance of PSDNorm, to assess the benefit of using a
barycenter as the target covariance matrix. Table 6 reports results on 10 datasets (balanced@400), with and without
whitening.

Whitening improves performance on only one dataset (CCSHS), while projecting to the barycenter yields the best
results on 6 datasets.
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Table 5: F1 scores of different methods on the left-out datasets. The lower section displays results for training over
datasets balanced @400 i.e., small-scale dataset, while the upper section presents results for training over all subjects
i.e., large-scale dataset. The best scores are highlighted in bold. The reported standard deviations indicate performance
variability across 3 seeds.

BatchNorm LayerNorm InstanceNorm PSDNorm(F=5) PSDNorm(F=9) PSDNorm(F=17)

A
ll

su
bj

ec
ts

ABC 79.80 ± 0.34 77.86 ± 0.80 78.36 ± 1.20 78.08 ± 0.78 76.93 ± 1.29 77.44 ± 0.58
CCSHS 88.32 ± 0.49 87.22 ± 0.51 88.73 ± 0.52 88.79 ± 0.99 87.86 ± 1.08 88.91 ± 0.28
CFS 87.01 ± 0.18 85.61 ± 0.16 87.62 ± 0.27 87.06 ± 0.77 87.26 ± 0.42 86.52 ± 0.99
CHAT 66.56 ± 1.42 61.32 ± 2.25 64.19 ± 4.63 71.86 ± 0.95 68.61 ± 5.36 71.12 ± 1.09
HOMEPAP 76.20 ± 1.25 76.15 ± 1.13 77.66 ± 0.58 77.85 ± 1.29 77.57 ± 0.68 77.18 ± 1.25
MASS 76.06 ± 1.69 73.95 ± 5.80 76.94 ± 1.12 77.16 ± 1.73 78.50 ± 1.82 76.86 ± 4.06
MROS 83.69 ± 0.39 82.22 ± 1.27 83.95 ± 0.53 83.51 ± 0.84 84.63 ± 1.02 83.96 ± 0.87
PhysioNet 76.26 ± 1.27 70.40 ± 0.14 73.84 ± 0.93 73.51 ± 3.05 73.80 ± 1.24 74.76 ± 0.50
SHHS 76.98 ± 0.70 75.98 ± 0.22 79.12 ± 0.96 79.26 ± 1.35 78.65 ± 1.04 77.69 ± 0.88
SOF 85.49 ± 0.58 84.23 ± 1.30 85.50 ± 0.86 84.14 ± 1.05 85.54 ± 0.16 85.33 ± 0.16
Mean 79.64 ± 0.41 77.57 ± 0.73 79.59 ± 0.25 80.12 ± 0.57 79.94 ± 0.80 79.98 ± 0.47

B
al

an
ce

d@
40

0

ABC 81.00 ± 0.11 79.50 ± 0.49 80.56 ± 0.39 81.12 ± 0.37 80.80 ± 0.22 80.90 ± 0.31
CCSHS 89.83 ± 0.19 89.01 ± 0.43 89.39 ± 0.16 89.13 ± 0.17 89.22 ± 0.17 89.45 ± 0.57
CFS 88.30 ± 0.52 87.39 ± 0.06 88.45 ± 0.17 88.52 ± 0.15 88.32 ± 0.34 88.23 ± 0.47
CHAT 65.77 ± 4.06 65.25 ± 3.96 71.35 ± 2.75 72.16 ± 2.21 71.93 ± 3.01 72.99 ± 4.01
HOMEPAP 77.06 ± 0.14 76.62 ± 1.06 77.50 ± 0.46 77.30 ± 0.24 77.78 ± 0.62 77.98 ± 0.90
MASS 77.27 ± 1.42 74.21 ± 2.05 75.12 ± 2.08 76.00 ± 3.00 74.16 ± 4.21 74.10 ± 0.47
MROS 85.53 ± 0.48 84.02 ± 0.95 85.22 ± 0.19 85.02 ± 0.42 85.37 ± 0.30 84.93 ± 0.53
PhysioNet 74.98 ± 1.84 74.29 ± 1.50 75.07 ± 1.05 75.29 ± 1.21 75.41 ± 0.68 74.57 ± 1.16
SHHS 78.95 ± 0.92 78.04 ± 1.21 80.30 ± 1.29 80.32 ± 0.91 79.22 ± 1.27 80.06 ± 1.30
SOF 86.30 ± 0.40 85.82 ± 0.22 86.57 ± 0.60 86.99 ± 0.33 86.75 ± 0.54 86.76 ± 0.23
Mean 80.50 ± 0.51 79.41 ± 0.73 80.95 ± 0.36 81.19 ± 0.11 80.89 ± 0.00 81.00 ± 0.28

This suggests that, while whitening may help when F = 1, it is less effective when F > 1. Using a barycenter leads to
a more robust and stable target covariance matrix.

Table 6: Impact of the whitening on the performance of PSDNorm on the 10 datasets balanced @ 400.

BatchNorm InstanceNorm PSDNorm(F=5) PSDNorm(F=9) PSDNorm(F=17)
Whitening Barycenter Whitening Barycenter Whitening Barycenter Whitening

ABC 78.26 ± 1.33 78.73 ± 0.42 78.18 ± 0.68 77.86 ± 1.33 78.18 ± 0.91 78.16 ± 0.93 77.76 ± 1.00 78.34 ± 0.33
CCSHS 87.42 ± 0.16 87.62 ± 0.42 87.58 ± 0.30 87.80 ± 0.23 87.35 ± 0.52 87.53 ± 0.21 87.62 ± 0.48 87.90 ± 0.57
CFS 84.32 ± 0.57 84.72 ± 0.33 84.29 ± 0.36 84.01 ± 0.60 84.06 ± 0.10 84.20 ± 0.23 84.46 ± 0.06 84.04 ± 0.91
CHAT 66.55 ± 0.88 64.43 ± 4.41 70.28 ± 1.70 69.07 ± 3.73 68.11 ± 3.94 69.31 ± 2.50 69.88 ± 0.46 69.43 ± 1.80
HOMEPAP 75.25 ± 0.50 76.47 ± 0.63 76.83 ± 0.61 76.13 ± 0.93 76.61 ± 0.74 76.45 ± 0.29 76.49 ± 0.45 76.81 ± 0.22
MASS 70.00 ± 1.91 71.52 ± 1.13 72.77 ± 1.09 69.11 ± 1.51 73.07 ± 1.30 69.01 ± 0.78 72.23 ± 2.40 70.41 ± 1.50
MROS 80.37 ± 0.20 80.28 ± 0.21 80.26 ± 0.11 80.50 ± 0.75 80.32 ± 0.22 80.52 ± 0.15 80.70 ± 0.42 79.96 ± 0.53
PhysioNet 75.81 ± 0.13 74.68 ± 0.55 74.82 ± 2.11 74.58 ± 1.57 73.77 ± 1.73 75.08 ± 2.18 75.09 ± 0.97 75.61 ± 0.71
SHHS 76.44 ± 0.92 78.68 ± 0.37 78.88 ± 0.68 78.77 ± 0.67 77.28 ± 0.91 78.85 ± 0.16 78.41 ± 0.49 77.77 ± 1.35
SOF 81.08 ± 1.14 80.68 ± 1.38 79.49 ± 0.41 80.10 ± 0.62 81.44 ± 0.97 80.53 ± 0.05 81.07 ± 0.66 79.63 ± 0.89
Mean 77.55 ± 0.34 77.78 ± 0.46 78.34 ± 0.42 77.79 ± 0.30 78.02 ± 0.67 77.96 ± 0.12 78.37 ± 0.38 77.99 ± 0.35

A.7 Generalization of PSDNorm in CNNTransformer

The CNNTransformer architecture is a hybrid model that combines convolutional and transformer layers for time series
classification.

The main paper presents a critical difference diagram for the CNNTransformer evaluated on datasets balanced@400. It
shows that PSDNorm with F = 5 is the best-performing normalization layer.

In Table 7, we report the results of different normalization layers used in the CNNTransformer architecture on datasets
balanced@400.

First, we observe that CNNTransformer performs slightly below U-Sleep. Second, BatchNorm and InstanceNorm are
the best performers on one and two datasets respectively, while PSDNorm achieves the best performance on 7 out of 10
datasets.

PSDNorm with F = 5 outperforms BatchNorm by a margin of 0.9 and InstanceNorm by 0.54 in average score.
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Table 7: Different normalization layers used in the CNNTransformer architecture for datasets balanced@400.

BatchNorm InstanceNorm PSDNorm(F=5) PSDNorm(F=9) PSDNorm(F=17)
ABC 76.99 ± 0.53 75.40 ± 0.36 76.31 ± 0.46 75.55 ± 0.82 75.12 ± 0.31
CCSHS 86.75 ± 0.48 87.00 ± 0.34 86.92 ± 0.32 86.92 ± 0.32 87.27 ± 0.40
CFS 83.32 ± 0.35 83.77 ± 0.34 83.71 ± 0.29 83.47 ± 0.61 83.68 ± 0.34
CHAT 66.44 ± 0.49 66.40 ± 2.55 70.04 ± 0.37 69.70 ± 2.49 67.60 ± 3.84
HOMEPAP 74.81 ± 1.36 75.92 ± 0.44 75.26 ± 0.55 75.55 ± 0.81 75.14 ± 1.14
MASS 71.51 ± 0.47 71.70 ± 1.17 72.55 ± 0.81 72.86 ± 0.11 73.26 ± 0.26
MROS 79.77 ± 0.31 79.74 ± 0.55 79.77 ± 0.30 79.52 ± 0.33 79.83 ± 0.52
PhysioNet 72.54 ± 0.34 74.36 ± 0.84 74.95 ± 0.41 75.32 ± 1.08 75.19 ± 1.25
SHHS 75.34 ± 0.34 76.55 ± 0.92 77.26 ± 0.57 76.44 ± 0.99 76.64 ± 0.80
SOF 80.63 ± 0.60 80.78 ± 0.54 80.31 ± 0.90 80.84 ± 0.30 80.65 ± 1.00
Mean 76.81 ± 0.23 77.16 ± 0.24 77.71 ± 0.22 77.62 ± 0.37 77.44 ± 0.53

These results highlight that PSDNorm is a plug-and-play normalization layer that can be seamlessly integrated into
various architectures to reduce feature space variability.

A.8 Critical Difference Diagram for U-Sleep on all subjects

The main paper presents the critical difference diagram for U-Sleep on the dataset balanced@400. Figure 6 extends this
analysis to all subjects across datasets. The conclusion remains consistent: PSDNorm with F = 5 is the best-performing
normalization layer, while BatchNorm performs the worst. Interestingly, PSDNorm with F = 17 ranks second to last,
suggesting that overly strong adaptation can hurt performance when the dataset is large.

2.8 3.0 3.2 3.4 3.6

PSDNorm(F=5) 
PSDNorm(F=9) 

 BatchNorm
 PSDNorm(F=17)
 InstanceNorm

USleep (All subjects)

Figure 6: Critical difference diagram for U-Sleep on all subjects.
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