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Abstract

Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a
labeled source domain to perform well on an unlabeled target domain with some
data distribution shift. While many methods have been proposed in the literature,
fair and realistic evaluation remains an open question, particularly due to method-
ological difficulties in selecting hyperparameters in the unsupervised setting. With
SKADA-Bench, we propose a framework to evaluate DA methods and present a fair
evaluation of existing shallow algorithms, including reweighting, mapping, and sub-
space alignment. Realistic hyperparameter selection is performed with nested cross-
validation and various unsupervised model selection scores, on both simulated
datasets with controlled shifts and real-world datasets across diverse modalities,
such as images, text, biomedical, and tabular data with specific feature extrac-
tion. Our benchmark highlights the importance of realistic validation and provides
practical guidance for real-life applications, with key insights into the choice and
impact of model selection approaches. SKADA-Bench is open-source, reproducible,
and can be easily extended with novel DA methods, datasets, and model selection
criteria without requiring re-evaluating competitors. SKADA-Bench is available on
GitHub at https://github.com/scikit-adaptation/skada-bench.

1 Introduction

Given some training –or source– data, supervised learning consists in estimating a function that makes
good predictions on target data. However, performance often drops when the source distribution used
for training differs from the target distribution used for testing. This shift can be due, for instance, to
the collection process or non-stationarity in the data, and is ubiquitous in real-life settings. It has been
observed in various application fields, including tabular data [16], clinical data [18], or computer
vision [15].

Domain adaptation. Unsupervised Domain Adaptation (DA) addresses this problem by adapting a
model trained on a labeled source dataset –or domain– so that it performs well on an unlabeled target
domain, assuming some distribution shifts between the two [2, 41, 42]. As illustrated in Figure 1,
source and target distributions can exhibit various types of shifts [36]: changes in feature distributions
(covariate shift), class proportions (target shift), conditional distributions (conditional shift), or in
distributions in particular subspaces (subspace shift). Depending on the type of shift, existing DA
methods attempt to align the source distribution closer to the target using reweighting [46, 50],
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Figure 1: Illustration of the different data shifts studied in the DA literature using the simulated
datasets used in the numerical experiments.

mapping [7, 52], or dimension reduction [12, 39] methods. More recently, it has been proposed to
mitigate shifts in a feature space learned by deep learning [9, 15, 29, 53], primarily focusing on
computer vision applications. Regardless of the core algorithm used to address the domain shift,
hyperparameters must be tuned for optimal performance. Indeed, a critical challenge in applying
DA methods to real-world cases is selecting the appropriate method and tuning its hyperparameters,
especially given the unknown shift type and the absence of labels in the target domain.

Model selection in DA settings. Without distribution shifts, classical model selection strategies
–including hyperparameter optimization– rely on evaluating the generalization error with an indepen-
dent labeled validation set. However, in DA, validating the hyperparameters in a supervised manner
on the target domains is impossible due to the lack of labels. While it is possible to validate the
hyperparameters on the source domain, it generally leads to a suboptimal model selection because of
the distribution shift. In the literature, this problem is often raised but not always addressed. Some
papers choose not to validate the parameters [39], while others validate on the source domain [52] or
propose custom cross-validation methods [51]. Few papers focus specifically on DA model selection
criteria, which we will call scorers in this paper. These scorers are used to select the methods’
hyperparameters, and mainly consists of reweighting methods on source [49, 59], prediction entropy
[37, 45] or circular validation [3]. One of the goals of our benchmark is to evaluate these approaches
in realistic scenarios.

Benchmarks of DA. As machine learning continues to flourish, new methods constantly emerge,
making it essential to develop benchmarks that facilitate fair comparisons [22, 31, 35, 40]. In DA and
related fields, several benchmarks have been proposed. Numerous papers focus on Out-of-distribution
(OOD) datasets for different modalities: computer vision, text, graphs [25, 44], time-series [14],
AI-aided drug discovery [23] or tabular dataset [16]. Due to the type of data considered, existing
benchmarks are mainly focused on Deep DA methods [11, 24, 38, 56], offering an incomplete
evaluation of DA literature. Moreover, only a few benchmarks propose a comparison of Deep
unsupervised DA methods with realistic parameters selection, on computer vision [20, 38] and time
series [11] data. Those benchmarks have shown the importance of validating with unsupervised
scores and reveal that deep DA methods achieve much lower performance in realistic scenarios. In
the present work, we focus on “shallow” DA methods, addressing a gap in the DA literature and its
evaluation.

Contributions. In the following, we propose SKADA-Bench, an ambitious and fully reproducible
benchmark with the following features: 1. a set of 4 simulated and 8 real-life datasets with different
modalities (CV, NLP, tabular, biomedical) totaling 51 realistic shift scenarios, 2. a wide range of
20 shallow DA methods designed to handle different types of shifts, 3. a realistic model selection
procedure using 5 different unsupervised scorers with nested cross-validation for hyperparameter
selection, 4. an open-source code and publicly available datasets, easy to extend for new DA methods
and datasets without the need to re-run the whole experiment.
In addition, we provide a detailed analysis of the results and derive guidelines for practitioners to
select the best methods depending on the type of shifts, and the best scorer to perform unsupervised
model selection. In particular, the effects of model selection and the scorer’s choice on the final
performances are highlighted, showing a clear gap between the unsupervised realistic scorers versus
using target labels for supervised validation.
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2 Domain adaptation and model selection without target labels

In this section, we first discuss the specificities of the unsupervised domain adaptation problem and
introduce several types of data shift and their corresponding DA methods. Next, we discuss the
different validation strategies used in the literature and the need for realistic scorers to compare DA
methods.

2.1 Data shifts and DA strategies

Domain Adaptation problem and theory. The theoretical framework of DA is well established
[2, 41, 42]. The main results highlight that the performance discrepancy of an estimator between the
source and target domains is linked to the divergence between both distributions. This has motivated
the majority of DA methods to search for a universal (or domain invariant) predictor by minimizing
the divergence between the two domains through the adaptation of the distributions. This is done in
practice by modeling and estimating the shift between the source and target distributions and then
compensating for this shift before training a predictor.

Data Shifts and DA methods. A wide variety of shifts between the source and target dis-
tributions are possible. They are usually expressed as a relation between the joint distribu-
tions P s(x, y) = P s(x|y)P s

Y(y) = P s(y|x)P s
X (x) in the source domain and P t(x, y) =

P t(x|y)P t
Y(y) = P t(y|x)P t

X (x) in the target domain. We now discuss the main types of shifts and
the strategies proposed in the literature to mitigate them. Figure 1 illustrates these shifts.

In Covariate shift the conditionals probabilities are equal (i.e., P s(y|x) = P t(y|x)), but the feature
marginals change (i.e., P s

X (x) ̸= P t
X (x)). Target shift is similar, but the label marginals change

P s
Y(y) ̸= P t

Y(y) while the conditionals are preserved. For classification problems, it corresponds
to a change in the proportion of the classes between the two domains. Both of those shifts can be
compensated by reweighting methods that assign different weights to the samples of the source
domain to make it closer to the target domain [46, 50].

In Conditional shift, conditional probabilities differ between domain (i.e., P s(x|y) ̸= P t(x|y) or
P s(y|x) ̸= P t(y|x)). This shift is typically harder to compensate for, necessitating explicit modeling
to address it effectively. For instance, several approaches model the shift as a mapping m between
the source and target domain such that P s(y|m(x)) = P t(y|x) [7, 52]. The estimated mapping is
then applied to the source data before training a predictor.

Subspace shift, also known as domain invariant representation, assumes that while probabilities
are different between the domains, there exists a subspace Z and a function ϕ : X → Z such that
P s(y|ϕ(x)) = P t(y|ϕ(x)). This implies that a classifier trained on this subspace will perform well
across both domains. Subspace methods aim to identify the subspace Z and the function ϕ, as
developed in [12, 39]. Note that, as discussed in the introduction, a natural extension of this idea is to
learn a non-linear invariant subspace using deep learning [15, 53].

2.2 DA model selection strategies

As seen above, the different DA methods are usually designed for one type of shift, yet in a practical
problem, one does not know what shift is present. This raises the problem of method and parameter
selection when facing a new problem. In this section, we discuss the validation strategies proposed in
the literature to compare DA methods, focusing on realistic scorers that do not use target labels.

Realistic DA scorers. In the literature, few papers propose realistic DA scorers to validate the
parameters of the methods, i.e., unsupervised scorers that do not require target labels. The Importance
Weighted (IW) scorer [49] computes the score as a reweighted accuracy on labeled sources data. The
Deep Embedded Validation (DEV) [59] can be seen as an IW in the latent space with a variance
reduction strategy. DEV was originally proposed for deep learning models but can be used on shallow
DA methods that compute features from the data (mapping/subspaces). The Prediction Entropy
(PE) scorer [37] measures the uncertainty associated with model predictions on the target data. Soft
Neighborhood Density (SND) [45] also computes an entropy but on a normalized pairwise similarity
matrix between probabilistic predictions on target. The Circular Validation (CircV) scorer [3]
performs DA by first adapting the model from the source to the target domain and predicting
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Figure 2: Visualization of nested cross-validation strategy. Both source and target data are split
into an outer loop and then a nested loop. The nested loop tunes hyperparameters for the domain
adaptation method, while the outer loop trains a final classifier with the best hyperparameters and
evaluates its accuracy on both source and target data. Note: Target sets have no labels during the
nested loop, reflecting unsupervised domain adaptation.

the target labels. Next, it adapts back from the target to the source using these estimated labels.
Performance is measured as the accuracy between the recovered and true source labels.

DA validation in the literature. The model selection problem in DA has been widely discussed in
the literature. Yet, this literature constitutes a subfield of DA and has seldom been used to validate new
DA methods. Indeed, there is no consensus on the best validation strategy and many papers do not
properly validate their methods, leading to over-estimated performances. Some authors do not discuss
the validation procedure [46, 50] or consider fixed hyperparameters [21]. While some methods rely
on custom validation technique [51], others use cross-validation, either on the source or the target
[7, 52], or alternatively other validation strategies proposed in the literature [3, 6]. A complete picture
of the model selection procedures used to validate the methods considered in SKADA-Bench in their
original papers is presented in Table A.1 in Appendix. The goal of SKADA-Bench is therefore to
constitute a dedicated benchmark to compare scorers from the literature and report performances that
can be expected in real use cases for the considered methods.

3 A realistic benchmark for DA

In this section, we present our benchmark framework. First, we introduce the parameter validation
strategies. Then, we present the compared DA methods followed by a description of the datasets used
in the benchmark.

3.1 Nested cross-validation loop and implementation

We discuss below the nested cross-validation and the implementation details of the benchmark.

Hyperparameter validation loop. We propose a nested loop cross-validation procedure, depicted
in Figure 2. First, the source and target data are split into multiple outer test and train sets (outer
loop in Figure 2). The test sets are kept to compute the final accuracy for both the source and target
domains. For each split in the outer loop, we use a nested loop to select the DA methods’ parameters.
Here, the training sets are further divided into nested train and validation sets (nested loop in Figure 2).
Note that no labels are available for the target nested train and validation sets in this loop. The target
training set is used to train the DA method, while the target validation set allows to compute the
unsupervised score and select the best model.
For both loops, the data is split randomly 5 times using stratified sampling with an 80%/20% train/test
split. For one given method, we evaluate all the unsupervised scorers discussed earlier, as well as a
supervised scorer that uses target labels, over all the nested splits. After averaging, the scores over
the splits, the best hyperparameters are selected according to each scorer and then used to train a final
classifier on the outer training sets. Although the supervised scorer cannot be used in practice, it is
included in our results to actually evaluate the performance drop due to the absence of target labels.
To limit complexity and perform a fair comparison of the methods, we set a timeout of 4 hours for
performing the nested loop.
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Base estimator. Existing domain adaptation methods typically rely on either a base estimator
trained on the adapted data or an iterative estimation process to adapt this estimator to the target
data. The choice of the base estimator is crucial, as it significantly impacts the final performance.
Before validating the hyperparameters of the DA methods, we determined the best estimator for
each dataset using a grid-search on the source data. We tested multiple hyperparameters for Logistic
Regression, SVM with RBF kernel, and XGBoost [5], selecting the ones that maximize the average
accuracy on the source test sets. Note that for some methods that specifically require an SVM
estimator (i.e., JDOT and DASVM), we only validate SVM as the base estimator. We validated the
base estimator separately from the DA methods parameters to reduce computational complexity and
avoid too complex hyperparameter grids that can compromise the reliability of DA scorers.

Best scorer selection and statistical test. For all methods, we select the best validation scorer
as the one that maximizes the averaged accuracy on the target domains for all real datasets. This
provides a reasonable and actionable choice of scorer for each DA method for practitioners. For
all methods and datasets, we perform a paired Wilcoxon signed-rank test at the 0.05 level to detect
significant gain or drop in performance with respect to the no DA approach, denoted by “Train Src”
in the following. The test is done using the accuracy measures of the DA method with the selected
scorer and the Train Src for all shifts and outer splits, ensuring between 10 and 60 values depending
on the dataset.

Python implementation. The benchmark code will be made available on GitHub upon publication
of the paper.* Our benchmark is implemented following the benchopt framework [35], which
provides standardized ways of organizing and running benchmarks for ML in Python. This framework
facilitates reproducing the benchmark’s results, with tools to install the dependencies, run the methods
in parallel, or cache the results to prevent redundant computations. It also makes it easy to extend the
benchmark with additional datasets and methods, enabling it to evolve to account for the advances
in the field. In the supplementary materials, we provide examples demonstrating how to add DA
methods or datasets to the benchmark. Using this framework, we aim to make SKADA-Bench a
reference benchmark to evaluate new DA methods in realistic scenarios with valid performance
estimations.

3.2 Compared DA methods

In this section, we present the different families of domain adaptation methods that we compare in
our benchmark. We group the methods into four categories: reweighting methods, mapping methods,
subspace methods, and others. We provide a brief description of each method and the corresponding
references.

Reweighting methods. These methods aim to reweight the source data to make it closer to the
target data. The weights are estimated using different methods such as kernel density estimation
(Dens. RW) [50], Gaussian estimation (Gauss. RW) [46], discriminative estimation (Discr. RW) [46],
or nearest-neighbors (NN RW) [30]. Other reweighting estimate weights by minimizing a divergence
between the source and target distributions such as Kullback-Leibler Importance Estimation Procedure
(KLIEP) [51] or Kernel Mean Matching (KMM) [21]. Finally, we also include the MMDTarS method
[60] that uses a Maximum Mean Discrepancy (MMD) to estimate the weights under the target shift
hypothesis.

Mapping methods. These methods aim to find a mapping between the source and target data that
minimizes the distribution shift. The Correlation Alignment method (CORAL) [52] aligns the second-
order statistics of source and target distributions. The Maximum Mean Discrepancy (MMD-LS)
method [60] minimizes the MMD to estimate an affine Location-Scale mapping. Finally, the Optimal
Transport (OT) mapping methods [7] use the optimal transport plan to align with a non-linear mapping
of the source and target distributions with exact OT (MapOT), entropic regularization (EntOT), or
class-based regularization (ClassRegOT). Finally, the Linear OT method [13] uses a linear mapping
to align the source and target distributions, assuming Gaussian distributions.

Subspace methods. These methods aim to learn a subspace where the source and target data have
the same distribution. The Transfer Component Analysis (TCA) method [39] searches for a kernel

*Our code is available in supplementary materials.

5



Table 1: Characteristics of the real-world datasets used in SKADA-Bench.
Dataset Modality Preprocessing # adapt # classes # samples # features
Office 31 [26] CV Decaff [10] + PCA 6 31 470 ± 350 100
Office Home [55] CV ResNet [19] + PCA 12 65 3897 ± 850 100
MNIST/USPS [28] CV Vect + PCA 2 10 3000 / 10000 50
20 Newsgroup [27] NLP LLM [43, 57] + PCA 6 2 3728 ± 174 50
Amazon Review [32, 33] NLP LLM [43, 57] + PCA 12 4 2000 50
Mushrooms [8] Tabular One Hot Encoding 2 2 4062 ± 546 117
Phishing [34] Tabular NA 2 2 5527 ± 1734 30
BCI [54] Biosignals Cov+TS [1] 9 4 288 253

embedding that minimizes the MMD divergence between the domains while preserving the variance.
The Subspace Alignment (SA) method [12] aims to learn a subspace where the source and target
have their covariance matrices aligned. The Transfer Subspace Learning (TSL) method [47] aims
to learn a subspace using classical supervised loss functions on the source (e.g., PCA, Fisher LDA)
but regularized so that the source and target data have the same distribution once projected on the
subspace. Finally, the Joint Principal Component Analysis (JPCA) method is a simple baseline that
concatenates source and target data before applying a PCA on all data.

Others. We also include other methods that do not fit into the previous categories. The Domain
Adaptation SVM (DASVM) method [3] is a self-labeling method that iteratively updates SVM
estimators by adding new target samples with predicted labels and removing source samples. The
Joint Distribution Optimal Transport (JDOT) method [6] aims to learn a target predictor that minimizes
an OT loss between the joint source and target distributions. The Optimal Transport Label Propagation
(OTLabelProp) method [48] uses the optimal transport plan to propagate labels from the source to the
target domain.

3.3 Compared datasets

In this section, we present the datasets used in our experiments. We first introduce the synthetic
datasets that implement different known shifts. Then, we describe the real-world datasets from
various modalities and tasks such as Computer Vision (CV), Natural language Processing (NLP),
tabular data, and biosignals.

Simulated datasets. The objective of the simulated datasets is to evaluate the performance of the
DA methods under different types of shifts. Knowing that multiple DA methods have been built to
handle specific shifts, evaluating them with this dataset will demonstrate whether they perform as
expected and if they are properly validated.
The 4 simulated shifts in 2D, covariate (Cov. shift), target (Tar. shift) conditional (Cond. shift) and
Subspace (Sub. shift) shift are illustrated in Figure 1. The source domain is represented by two
non-linearly separable classes generated from one large and several smaller Gaussian blobs. In the
experiments, the level of noise has been adjusted from Figure 1 to make the problem more difficult.
For the subspace shift scenario, the source domain consists of one class represented by a large
Gaussian blob and another class comprising Gaussian blobs positioned along the sides of the large
one. The target domain is flipped along the diagonal, making the task challenging in the original
space but feasible upon diagonal projection.

Real-word datasets. The real-world datasets used in our benchmark are summarized in Table 1. We
select 8 datasets from different modalities and tasks: Computer Vision (CV) with Office31 [26], Office
Home [55], and MNIST/USPS [28], Natural Language Processing (NLP) with 20Newsgroup [27]
and Amazon Review [33], Tabular Data with Mushrooms [8] and Phishing [34], and Biosignals with
BCI Competition IV [54]. The datasets are chosen to represent a wide range of shifts and to evaluate
the performance of the methods on different types of data.
The datasets are preprocessed with feature extraction to ensure reasonable performance when trained
on each domain. For example, images are embedded using pre-trained models followed by a PCA
(except MNIST/USPS where only PCA is used), and textual data is embedded using Large Language
Models (LLM) [43, 57] before applying a PCA. The tabular data are one-hot encoded to transform
categorical data into numerical data. The biosignals from Brain-Computer Interface (BCI) data are
embedded using the state-of-the-art tangent space representation proposed in [1]. The datasets are
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Table 2: Accuracy score for all datasets compared for all the methods for simulated and real-life
datasets. The color indicates the amount of the improvement. A white color means the method is
not statistically different from Train Src (Train on source). Blue indicates that the score improved
with the DA methods, while red indicates a decrease. The darker the color, the more significant the
change.
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Train Src 0.88 0.85 0.66 0.19 0.59 0.56 0.54 0.59 0.7 0.72 0.91 0.55 9.75
Train Tgt 0.92 0.93 0.82 0.98 0.88 0.8 0.96 1.0 0.73 1.0 0.97 0.64 1.06

R
ew

ei
gh

tin
g

Dens. RW [50] 0.88 0.86 0.66 0.18 0.57 0.55 0.54 0.58 0.7 0.71 0.91 0.55 IW 10.76
Disc. RW [46] 0.85 0.83 0.71 0.18 0.58 0.53 0.5 0.6 0.68 0.75 0.91 0.56 CircV 11.12
Gauss. RW [46] 0.89 0.86 0.65 0.21 0.2 0.44 0.11 0.54 0.6 0.51 0.46 0.25 CircV 19.42
KLIEP [51] 0.88 0.86 0.66 0.19 0.59 0.56 0.54 0.6 0.69 0.72 0.91 0.55 CircV 10.36
KMM [21] 0.89 0.87 0.64 0.15 0.58 0.55 0.52 0.7 0.57 0.74 0.91 0.52 CircV 12.11
NN RW [30] 0.89 0.86 0.67 0.15 0.58 0.55 0.54 0.59 0.66 0.71 0.91 0.54 CircV 11.91
MMDTarS [60] 0.88 0.86 0.64 0.2 0.56 0.55 0.54 0.59 0.7 0.74 0.91 0.55 IW 9.51

M
ap

pi
ng

CORAL [52] 0.66 0.84 0.66 0.19 0.59 0.57 0.62 0.73 0.69 0.72 0.92 0.62 CircV 7.10
MapOT [7] 0.72 0.57 0.82 0.02 0.55 0.51 0.61 0.76 0.67 0.63 0.84 0.47 PE 10.98
EntOT [7] 0.71 0.6 0.82 0.12 0.58 0.58 0.6 0.83 0.62 0.75 0.86 0.54 CircV 9.75
ClassRegOT [7] 0.74 0.58 0.81 0.11 0.61 0.53 0.62 0.96 0.68 0.82 0.88 0.52 IW 8.71
LinOT [13] 0.73 0.73 0.76 0.18 0.59 0.57 0.64 0.82 0.7 0.76 0.91 0.61 CircV 5.33
MMD-LS [60] 0.65 0.68 0.81 0.52 0.55 0.54 0.52 0.97 0.68 0.86 0.88 0.56 IW 9.66

Su
bs

pa
ce JPCA 0.88 0.85 0.66 0.15 0.55 0.47 0.51 0.77 0.69 0.78 0.9 0.54 PE 8.77

SA [12] 0.74 0.68 0.8 0.11 0.59 0.57 0.56 0.88 0.66 0.88 0.89 0.53 CircV 8.53
TCA [39] 0.46 0.48 0.55 0.56 0.04 NA 0.11 0.57 0.6 0.45 NA 0.27 CircV 19.57
TSL [47] 0.88 0.85 0.66 0.19 0.59 0.2 0.25 0.68 0.7 0.56 0.86 0.25 IW 14.65

O
th

er JDOT [6] 0.72 0.57 0.82 0.14 0.6 0.51 0.63 0.77 0.67 0.63 0.8 0.46 DEV 10.12
OTLabelProp [48] 0.72 0.59 0.81 0.05 0.61 0.56 0.62 0.86 0.67 0.64 0.86 0.5 CircV 10.49
DASVM [3] 0.89 0.86 0.65 0.14 NA NA NA 0.68 NA 0.78 0.88 NA CircV 11.00

split into pairs of source and target domains totaling 51 adaptation tasks in the benchmark. More
details about the datasets and pre-processing are available in Appendix B.

4 Benchmark results

We now present the results of the benchmark. Training and evaluation across all experiments required
1,215 CPU-hours on a standard Slurm [58] cluster. We first discuss and compare the performances of
the methods on the different datasets. Then, a detailed study of the unsupervised scorers is provided.

4.1 Performance of the DA methods

Results table. First, we report the realistic performances of the different methods when using
their selected scorer on the different datasets in Table 2. The cells showcasing a significant change
in performance with the Wilcoxon test are highlighted with colors. Blue indicates an increase in
performance, while red indicates a loss. The intensity of the color corresponds to the magnitude of the
gain or loss - the darker the shade, the larger the positive or negative change. Cells with a NA values
indicate that the method was not applicable to the dataset (DASVM is limited to binary classification)
or that the method has reached a timeout. We also report the best scorer and the average rank of the
methods for all datasets. In addition to Table 2 providing realistic performance estimations, we also
report in Table D.12 (Appendix D) the results when using the non-realistic supervised scorer.

Simulated data with known shifts. On simulated data with known shifts (i.e., underlined datasets),
DA methods tend to show a small but significant gain on the shift they were designed for. However,
they rarely reach the Train Tgt performances, and as expected, the methods perform poorly on the
shift they were not designed for. For Cov. shift, the improvement with reweighting methods is very
limited. We believe that using a complex base estimator (SVM with an RBF kernel) enables us
to train an estimator that works well on both source and target, leading to less impressive results.
The Appendix D contains detailed tables for two other base estimators (i.e., Logistic Regression
in Table D.9 and XGBoost in Table D.11). These tables show that the gain is larger for Logistic
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Regression, a linear classifier, although the overall performance is lower. Note that in the literature,
the base estimator used is often a simple method, which can explain the performance gains reported
in various papers.

Real life datasets. On the real-life datasets, we observe that DA methods do not consistently
outperform the Train Src approach. The only exceptions are the LinOT and CORAL methods, which
either result in a significant improvement or perform comparably to the Train Src approach. OT-
based mapping methods show gains on MNIST/USPS and 20NewsGroups. Other methods, such as
ClassRegOT, MMD-LS, JPCA, and SA, occasionally show better accuracy than Train Src. However,
interestingly, DA methods fail to improve performance on datasets like Office31, AmazonReview, and
Phishing. For the AmazonReview dataset, Train Src performs exceptionally well, possibly because
the selected LLM has been partially trained on similar Amazon review data, leading to invariant
representations [57].
Looking at the average rank of the methods, we observe that the Train Src approach has a relatively
small rank of 9.75 out of 20, while the best-rank DA methods are LinOT with a rank of 5.33 and
CORAL with 7.10. Other methods with a lower rank than Train Src are ClassRegOT, MMDTarS,
JPCA, and SA.

Selected scorer per DA method. We observe that the best scorer differs across methods, Circular
Validation has been selected 12 out of 20 times as the best scorer, followed by Importance Weighting
5 out of 20 times. Table D.12 in the supplementary material provides the accuracy results with the
supervised scorer. It is worth noting that the supervised scorer generally outperforms the unsupervised
ones, and several methods significantly outperform Train Src in each dataset. It is crucial to choose
the model realistically to avoid producing overly optimistic results, as many data analysis papers have
done (see able A.1).

These results show the methods’ sensitivity to parameter selections and the difficulty of using realistic
scorers. This might also explain why DA methods are not widely used in practice: they are very
difficult to tune and might decrease performances compared with no adaptation.

4.2 Study of validation scorers

We now investigate the performance of the various scorers to select hyperparameters of the DA
method. First, we consider the relationship between the cross-val score and the accuracy for each
inner split. In Figure 3, we plot for each scorer the cross-val score as a function of the accuracy
computed on the test set and report the Pearson correlation coefficient ρ. As expected, the supervised
scorer is highly correlated with the accuracy (ρ = 0.98), as it has access to the target labels. We
observe that SND, DEV, and PE do not provide a good proxy to select hyperparameters that give the
best-performing models (ρ ≤ 0.06). On the contrary, IW and CircV are correlated with the accuracy,
ρ = 0.53 and ρ = 0.71 respectively. This is coherent with their selection as the best scorer in most
scenarios in Table 2. Still, while those scorers are well correlated with the target accuracy, it is
important to note that they have a large variance. For instance, a score close to 1 in IW or CircV
corresponds to an accuracy between 0.5 and 1.0.
Furthermore, we provide in Figures D.3 and D.4, from Appendix D, several visualizations that
illustrate the relationship between the accuracy achieved when using a supervised scorer and the
accuracy obtained when using different unsupervised scorers. We also visualize in Figure D.2 the drop
in performance when using the best-unsupervised scorer instead of the supervised scorer. Interestingly
some methods such as KMM, EntOT, and ClassRegOT can lose up to 10% accuracy when using
realistic scorers, which might come from their high number of parameters or their sensitivity to them.

Our results thus show that most scorers have poor results when evaluated on many datasets. Of the
five methods under consideration, only two achieve satisfactory performance, although incurring large
variance in their results. This shows that proper hyperparameter selection is still an open question,
that needs attention from the research comunity to guide practitioners toward real life applications of
unsupervised DA technics.
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Figure 3: Cross-val score as a function of the accuracy for different supervised and unsupervised
scorers. The Pearson correlation coefficient is reported for each scorer by ρ. Each point represents an
inner split with a DA method (color of the points) and a dataset. A good score should correlate with
the target accuracy.

5 Conclusion

In this work, we introduced SKADA-Bench, a comprehensive benchmark for unsupervised domain
adaptation, focusing on shallow DA methods and the impact of their model selection. Our findings
reveal that few DA methods consistently perform well across diverse datasets and that model selection
scorers significantly influence their effectiveness. For each DA method, we provide the optimal
model selection scorer for unsupervised hyperparameter tuning based on our experiments. We believe
this benchmark will aid the community in understanding the critical role of model selection in DA
performance and inspire the development of methods that are more robust to hyperparameter choices.
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Appendix

Reproducibility. The entire code and results of SKADA-Bench are open-sourced at https://
github.com/scikit-adaptation/skada-bench. The implementation of the DA methods and
scorers is provided along with access to the simulated and real-world datasets. All the performance
tables and figures can be reproduced effortlessly, and guidelines with minimal working examples are
given to add new DA methods and datasets.

Roadmap. In this appendix, we provide additional information regarding the validation procedure
used in the literature for each DA method implemented in SKADA-Bench in Section A. We provide a
detailed description of the data and preprocessing used in SKADA-Bench in Section B. In Section C,
we give minimal working Python examples to add a new DA method and dataset in SKADA-Bench.
Finally, we provide the detailed benchmark results in Section D. In particular, the results per dataset
can be found in Section D.1. We discuss in Section D.2 the impact of the choice of base estimator
on the performance of DA methods for the simulated datasets. The results of each DA method with
the supervised scorer on all the datasets are given in Table D.12 of Section D.3, which parallels
Table 2. A thorough analysis of the effect of using realistic unsupervised scorers is also provided in
Section D.4. Finally, the computational efficiency of each DA method is studied in Section D.5 and
the hyperparameters used for grid search are given in Section D.6. We display the corresponding
table of contents below.
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A Model selection in Domain Adaptation

Table A.1: Validation procedure in Domain Adaptation methods. NA stands for not applicable
and means that there are no hyperparameters. None means that no validation procedure has been
conducted or that it is not specified in the original paper.

Method Validation Procedure Comment

R
ew

ei
gh

tin
g Density Reweight [50] None Bandwidth fixed by Silverman method

Discriminative Reweight [46] NA No hyperparameters
Gaussian Reweight [46] None Not specified in [46]

KLIEP [51] Integrated CV Likelihood CV [51] on target
KMM [21] None Fixed data-dependent hyperparameters

NN Reweight [30] None Number of neighbors fixed to one
MMDTarS [60] CV Not specified if done on source or target

M
ap

pi
ng

Coral [52] NA No hyperparameters
OT mapping [7] CV target/CircCV Unclear in the text

Lin. OT mapping [13] NA No hyperparameters
MMD-LS [60] CV Not specified if done on source or target

Su
bs

p. SA [12] 2-fold CV on source -
TCA [39] Validation on target Target subset used to tune parameters
TSL [47] None Not specified in [47]

O
th

er JDOT [6] Reverse CV [61] -
OT label prop [48] NA No hyperparameters

DASVM [3] Circular Validation [3] -

In Table A.1, we provide additional information on the validation procedures used in the original
papers that proposed the different domain adaptation methods implemented in SKADA-Bench. The
first column is the name of the method, the second column contains the procedure used to select
hyperparameters and the last column provides additional details. What is striking is that many
methods do not conduct or specify a validation procedure to select the hyperparameters, which limits
the performance of the proposed method on a novel dataset. Several others rely on cross-validation
using target data. However, since target labels are typically unavailable in practical scenarios, this
validation approach is unrealistic. Overall, many methods have been evaluated with unrealistic or
not reproducible validation procedures, making the performance of the proposed methods appear
over-optimistic. A key contribution of our work is the extensive comparison of realistic, unsupervised
scorers for selecting optimal hyperparameters and base estimators in DA methods.

B Datasets description and preprocessing

The simulated dataset proves that DA methods can work well under the proper shift (see Table 2).
However, in real-world applications, we do not have prior knowledge of the type of data shift. Hence,
finding the appropriate domain-adaptation method between reweighting, mapping, and subspace
methods is a challenging task. In this section, we introduce 8 real-world datasets coming from
different fields. Table 1 summarizes the 8 classification datasets used in this benchmark with the
corresponding data modality, preprocessing, number of source-target pairs (# adapt), number of
classes, samples, and feature dimensions.

Computer Vision. First, three computer vision datasets are proposed: Office31 [26], Office
Home [55], and MNIST/USPS [28]. We create embeddings for Office31 using the Decaff preprocess-
ing method [10] and for Office Home using a pre-trained ResNet50 [19]. These embeddings, as well
as vectorized MNIST/USPS, are dimensionally reduced with a Principal Component Analysis (PCA).
These three datasets encompass 3, 4, and 3 domains, respectively and all pairs of adaptations are
used as DA problems. MNIST/USPS contain clear and blurry images digits, Office31 differentiates
between images captured by various devices, while for OfficeHome, its by image style.

NLP. The second task is Natural Language Processing (NLP). Two datasets are studied: 20News-
group [27] and Amazon Review [33]. The 20Newsgroup dataset contains 20.000 documents catego-
rized into 4 categories: talk, rec, comp, and sci. The learning task is to classify documents across

15



categories. First, the documents are embedded using a Large Language Model (LLM) [43, 57], and
then PCA is applied for dimensionality reduction.

For the Amazon Review dataset, the task is to classify comment ratings. This dataset spans four
domains (Books, DVDs, Kitchen, Electronics), and the domain shift results from these varying types
of objects. Similar to the 20Newsgroup dataset, comments are embedded using the same LLM and
then reduced in dimensionality using a PCA.

Tabular data. We propose two tabular datasets. The first one is the Mushroom dataset [8], where
the task is to classify whether a mushroom is poisonous or not. The two domains are separated
according to the mushroom’s stalk shape (enlarging vs. tapering). The tabular data are one-hot-
encoded to transform categorical data into numerical data. The second dataset is Phishing [34]. The
classification problem involves determining whether a webpage is a phishing or a legitimate one.
The domains are separated according to the availability of the IP address. Since the data are already
numerical, no preprocessing is done on this dataset.

Biosignals. The last task is BCI Motor Imagery. The dataset used is BCI Competition IV [54],
often used in the literature [1]. The task is to classify four kinds of motor imagery (right hand, left
hand, feet, and tongue) from EEG data. In this dataset, nine subjects are available. The domains are
separated based on session number. For each subject, session 1 is considered as the source domain
and session 2 is considered as the target domain. The data are multivariate signals. To embed the data,
we first compute the covariance and then project this covariance on the Tangent Space as proposed in
[1].

C Adding new methods and datasets to SKADA-Bench

Using the benchopt framework for this benchmark allows users to easily add novel domain adapta-
tion (DA) methods and datasets. To that end, users should adhere to the benchopt [35] conventions.
We provide below the guidelines with examples in Python to add a new DA method and a new dataset
to SKADA-Bench.

C.1 Adding a new DA method

A new DA method can be easily added with the following:

• Create file with a class called Solver that inherits from DASolver and place it in the
solvers folder.

• This class should implement a get_estimator() function, which returns a class inheriting
from sklearn.BaseEstimator and accepts sample_weight as fit parameter. In the
benchmark we used the Domain Adaptation toolbox SKADA [17] that provides many esDA
estimatos with correct interface.

We provide below an example of Python implementation to add a new DA method to SKADA-Bench.
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# Python snippet code to add a DA method
from benchmark_utils.base_solver import DASolver
from sklearn.base import BaseEstimator

class MyDAEstimator(BaseEstimator):
def __init__(self, param1=10, param2='auto'):

self.param1 = param1
self.param2 = param2

def fit(self, X, y, sample_weight=None):
# sample_weight<0 are source samples
# sample_weight>=0 are target samples
# y contains -1 for masked target samples
# Your code here : store stuff in self for later predict
return self

def predict(self, X):
# do prediction on target domain here
return ypred

def predict_proba(self, X):
# do probabilistic prediction on target domain here
return proba

class Solver(DASolver):
name = "My_DA_method"

# Param grid to validate
default_param_grid = {

'param1': [10, 100],
'param2': ['auto', 'manual']

}

def get_estimator(self):
return MyDAEstimator()

C.2 Adding a new dataset

A new DA dataset can be easily added with the following:

• Create a file with a class called Dataset that inherits from BaseDataset and place it in
the datasets folder.

• This class should implement a get_data() function, which returns a dictionary with keys
X, y, and sample_domain.

We provide below an example of Python implementation to add a new dataset to SKADA-Bench.
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# Python snippet code to add a dataset

from benchopt import BaseDataset
from sklearn.datasets import make_blobs
import numpy as np

class Dataset(BaseDataset):
name = "example_dataset"

def get_data(self):
X_source, y_source = make_blobs(
n_samples=100, centers=3,
n_features=2, random_state=0
)

X_target, y_target = make_blobs(
n_samples=100, centers=5,
n_features=2, random_state=42
)
# sample_domain is negative for target sampels and positive for source
sample_domain = np.array([1]*len(X_source) + [-2]*len(X_target))

return dict(
X=np.concatenate((X_source, X_target), axis=0)
y=np.concatenate((y_source, y_target))
sample_domain=sample_domain

)

By following these guidelines, users can seamlessly integrate their own datasets and DA methods
into SKADA-Bench. It results in a user-friendly benchmark that enables fast, reproducible, and
reliable comparisons of common and novel DA methods and datasets. We will provide users with
precomputed result files and utilities, allowing them to run only the new methods or datasets. This
will speed up new comparisons and avoid unnecessary computations.

D Benchmark detailed results

D.1 Results per datasets

In Table 2 of the main paper, the reported performance for each method on a given dataset is an
average over the number of shifts, i.e., the number of source-target pairs denoted by #adapt in Table 1.
In this section, we provide additional details on the performance of methods for each shift in each
dataset. These results are presented in separate tables for each dataset

These detailed tables where cell in green denote a gain wrt Train Src (average outside of standard
deviation of Train Src) better illustrate the challenges of domain adaptation (DA) methods. They show
that not all shifts are equivalent within a given dataset. For example, Table D.5 reveals that only 4
shifts in the AmazonReview dataset present a DA problem (defined as a > 3% difference in accuracy
between Train Src and Train Tgt). While for the other shifts, we achieve similar performance whether
we train on source or target data. Additionally, some specific shifts present a DA problem that no
method can successfully address. This can be seen in the dsl → amz shift in the Office31 dataset, as
shown in Table D.2. Finally, some DA methods perform consistently across all shifts within a dataset,
as demonstrated by the results for the 20Newsgroup dataset in Table D.4.
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Table D.1: Accuracy score for MNIST/USPS dataset for each shift compared for all the methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

M
NIS

T→
USPS

USPS→
M

NIS
T

M
ea

n
Ran

k

Train Src 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 11.50
Train Tgt 0.96 ± 0.0 0.96 ± 0.01 0.96 ± 0.01 1.00

R
ew

ei
gh

tin
g

Dens. RW 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 12.75
Disc. RW 0.6 ± 0.01 0.4 ± 0.02 0.5 ± 0.02 18.00
Gauss. RW 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 20.50
KLIEP 0.66 ± 0.02 0.43 ± 0.02 0.54 ± 0.02 12.50
KMM 0.64 ± 0.02 0.41 ± 0.03 0.52 ± 0.02 17.00
NN RW 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 11.50
MMDTarS 0.66 ± 0.02 0.42 ± 0.02 0.54 ± 0.02 11.25

M
ap

pi
ng

CORAL 0.74 ± 0.01 0.51 ± 0.01 0.62 ± 0.01 5.50
MapOT 0.69 ± 0.02 0.54 ± 0.02 0.61 ± 0.02 4.00
EntOT 0.66 ± 0.02 0.54 ± 0.02 0.6 ± 0.02 5.00
ClassRegOT 0.69 ± 0.03 0.54 ± 0.03 0.62 ± 0.03 4.50
LinOT 0.74 ± 0.02 0.53 ± 0.02 0.64 ± 0.02 3.25
MMD-LS 0.63 ± 0.05 0.41 ± 0.04 0.52 ± 0.05 15.50

Su
bs

pa
ce JPCA 0.66 ± 0.02 0.37 ± 0.02 0.51 ± 0.02 12.50

SA 0.71 ± 0.03 0.41 ± 0.02 0.56 ± 0.02 10.50
TCA 0.1 ± 0.05 0.12 ± 0.03 0.11 ± 0.04 20.50
TSL 0.31 ± 0.05 0.19 ± 0.01 0.25 ± 0.03 19.00

O
th

er JDOT 0.73 ± 0.02 0.53 ± 0.02 0.63 ± 0.02 3.00
OTLabelProp 0.71 ± 0.03 0.53 ± 0.02 0.62 ± 0.02 6.50
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Table D.6: Accuracy score for Mushrooms dataset for each shift compared for all the methods. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

en
l→

tap

tap
→

en
l

M
ea

n
Ran

k

Train Src 0.67 ± 0.01 0.77 ± 0.01 0.72 ± 0.01 9.75
Train Tgt 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.00

R
ew

ei
gh

tin
g

Dens. RW 0.67 ± 0.01 0.76 ± 0.0 0.71 ± 0.01 10.50
Disc. RW 0.73 ± 0.06 0.78 ± 0.01 0.75 ± 0.04 5.00
Gauss. RW 0.56 ± 0.0 0.46 ± 0.0 0.51 ± 0.0 20.75
KLIEP 0.66 ± 0.02 0.77 ± 0.01 0.72 ± 0.01 12.50
KMM 0.7 ± 0.02 0.78 ± 0.01 0.74 ± 0.01 7.00
NN RW 0.67 ± 0.05 0.75 ± 0.01 0.71 ± 0.03 14.00
MMDTarS 0.7 ± 0.02 0.77 ± 0.01 0.74 ± 0.01 7.50

M
ap

pi
ng

CORAL 0.66 ± 0.02 0.77 ± 0.01 0.72 ± 0.02 13.50
MapOT 0.65 ± 0.01 0.62 ± 0.02 0.63 ± 0.01 16.50
EntOT 0.82 ± 0.01 0.67 ± 0.01 0.75 ± 0.01 9.00
ClassRegOT 0.92 ± 0.01 0.72 ± 0.01 0.82 ± 0.01 8.00
LinOT 0.72 ± 0.01 0.81 ± 0.01 0.76 ± 0.01 4.50
MMD-LS 0.88 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 3.50

Su
bs

pa
ce JPCA 0.76 ± 0.03 0.81 ± 0.0 0.78 ± 0.02 6.00

SA 0.93 ± 0.05 0.84 ± 0.01 0.88 ± 0.03 2.50
TCA 0.45 ± 0.04 0.46 ± 0.0 0.45 ± 0.02 21.75
TSL 0.62 ± 0.08 0.51 ± 0.01 0.56 ± 0.04 19.00

O
th

er JDOT 0.67 ± 0.02 0.6 ± 0.01 0.63 ± 0.01 14.50
OTLabelProp 0.68 ± 0.01 0.61 ± 0.01 0.64 ± 0.01 13.00
DASVM 0.71 ± 0.02 0.85 ± 0.0 0.78 ± 0.01 4.00
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Table D.7: Accuracy score for Phishing dataset for each shift compared for all the methods. A white
color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

ip_
ad

res
s→

no
_ip

_a
dre

ss

no
_ip

_a
dre

ss→
ip_

ad
res

s

M
ea

n
Ran

k

Train Src 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01 7.0
Train Tgt 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 1.0

R
ew

ei
gh

tin
g

Dens. RW 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01 6.5
Disc. RW 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01 9.5
Gauss. RW 0.51 ± 0.0 0.41 ± 0.0 0.46 ± 0.0 20.0
KLIEP 0.94 ± 0.01 0.89 ± 0.01 0.91 ± 0.01 5.0
KMM 0.94 ± 0.01 0.89 ± 0.02 0.91 ± 0.01 6.5
NN RW 0.94 ± 0.01 0.89 ± 0.01 0.91 ± 0.01 6.5
MMDTarS 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01 5.5

M
ap

pi
ng

CORAL 0.93 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 5.5
MapOT 0.83 ± 0.01 0.84 ± 0.03 0.84 ± 0.02 15.0
EntOT 0.87 ± 0.04 0.85 ± 0.03 0.86 ± 0.04 16.0
ClassRegOT 0.87 ± 0.02 0.89 ± 0.02 0.88 ± 0.02 9.0
LinOT 0.91 ± 0.01 0.9 ± 0.02 0.91 ± 0.02 7.0
MMD-LS NA 0.88 ± 0.01 0.88 ± 0.01 11.5

Su
bs

pa
ce JPCA 0.92 ± 0.01 0.89 ± 0.01 0.9 ± 0.01 8.0

SA 0.9 ± 0.02 0.88 ± 0.02 0.89 ± 0.02 11.0
TSL 0.88 ± 0.02 0.84 ± 0.02 0.86 ± 0.02 14.0

O
th

er JDOT 0.8 ± 0.02 0.8 ± 0.01 0.8 ± 0.02 18.0
OTLabelProp 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 16.0
DASVM NA 0.88 ± 0.01 0.88 ± 0.01 15.0
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D.2 Impact of the base estimators on the simulated datasets

As mentioned in the main paper, it is possible to partly compensate for the shift by choosing the right
base estimator. In this part, we provide the results on the Simulated dataset for three different base
estimators: Logistic Regression (LR) in Table D.9, SVM in Table D.10, and XGBoost in Table D.11.
Observing the two first rows for covariate shift, we see that with LR (Table D.9), there is a significant
drop in performance between training on the source v.s. training on the target (∼ 10%), while using
SVC (Table D.10) only leads to a drop (∼ 3%). Finally, using XGBoost (Table D.11) maintains the
performance. The reweighting DA methods help compensate for the shift when using a simpler LR
estimator. However when using an SVC, as shown in the main paper, the reweighting does not help to
compensate for the covariate shift. If we look at the other shifts, the problem is harder. The subspace
methods help with subspace shift, and the mapping methods help with the conditional shift.

These Tables show the importance of choosing the right base estimator. It is clear that choosing an
appropriate base estimator can partially compensate for some shifts.

Table D.9: Accuracy score for simulated datasets compared for all the methods with LR. A white
color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

M
ea

n
Ran

k

Train Src 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 10.50
Train Tgt 0.91 ± 0.02 0.92 ± 0.01 0.79 ± 0.03 0.97 ± 0.01 0.9 ± 0.02 2.00

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.84 ± 0.04 0.66 ± 0.03 0.07 ± 0.02 0.61 ± 0.03 7.50
Disc. RW 0.55 ± 0.02 0.78 ± 0.05 0.7 ± 0.04 0.06 ± 0.01 0.52 ± 0.03 13.25
Gauss. RW 0.89 ± 0.02 0.85 ± 0.03 0.64 ± 0.03 0.06 ± 0.01 0.61 ± 0.02 8.00
KLIEP 0.8 ± 0.02 0.81 ± 0.04 0.69 ± 0.03 0.07 ± 0.02 0.59 ± 0.03 8.25
KMM 0.84 ± 0.03 0.82 ± 0.05 0.66 ± 0.04 0.07 ± 0.02 0.6 ± 0.04 7.88
NN RW 0.81 ± 0.02 0.82 ± 0.04 0.67 ± 0.03 0.07 ± 0.01 0.59 ± 0.03 7.75
MMDTarS 0.8 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.07 ± 0.02 0.59 ± 0.03 10.75

M
ap

pi
ng

CORAL 0.73 ± 0.05 0.68 ± 0.11 0.75 ± 0.08 0.04 ± 0.02 0.55 ± 0.06 12.25
MapOT 0.73 ± 0.03 0.6 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.54 ± 0.03 13.75
EntOT 0.72 ± 0.05 0.61 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.54 ± 0.03 12.50
ClassRegOT 0.87 ± 0.08 0.59 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.57 ± 0.04 11.50
LinOT 0.77 ± 0.03 0.65 ± 0.06 0.76 ± 0.04 0.04 ± 0.02 0.56 ± 0.04 12.00
MMD-LS 0.7 ± 0.1 0.64 ± 0.06 0.78 ± 0.04 0.38 ± 0.22 0.63 ± 0.1 10.75

Su
bs

pa
ce JPCA 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 11.25

SA 0.8 ± 0.02 0.62 ± 0.04 0.78 ± 0.03 0.04 ± 0.02 0.56 ± 0.03 11.25
TCA 0.44 ± 0.29 0.49 ± 0.06 0.54 ± 0.11 0.54 ± 0.23 0.5 ± 0.17 15.50
TSL 0.8 ± 0.02 0.81 ± 0.03 0.68 ± 0.03 0.06 ± 0.01 0.59 ± 0.02 11.00

O
th

er

OTLabelProp 0.73 ± 0.03 0.59 ± 0.04 0.79 ± 0.03 0.03 ± 0.01 0.53 ± 0.03 13.50
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Table D.10: Accuracy score for simulated datasets compared for all the methods with SVC. A white
color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.

Cov
. sh

ift

Tar.
sh

ift

Con
d.

sh
ift

Sub
. sh

ift

M
ea

n
Ran

k

Train Src 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 9.38
Train Tgt 0.92 ± 0.02 0.93 ± 0.02 0.82 ± 0.03 0.98 ± 0.01 0.91 ± 0.02 1.25

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.86 ± 0.04 0.66 ± 0.02 0.18 ± 0.04 0.64 ± 0.03 8.88
Disc. RW 0.85 ± 0.04 0.83 ± 0.04 0.72 ± 0.04 0.18 ± 0.03 0.64 ± 0.04 10.75
Gauss. RW 0.89 ± 0.03 0.86 ± 0.04 0.65 ± 0.02 0.21 ± 0.04 0.65 ± 0.03 7.00
KLIEP 0.88 ± 0.03 0.86 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 8.12
KMM 0.89 ± 0.03 0.87 ± 0.04 0.64 ± 0.04 0.15 ± 0.05 0.64 ± 0.04 9.50
NN RW 0.89 ± 0.03 0.86 ± 0.04 0.67 ± 0.02 0.15 ± 0.04 0.64 ± 0.03 9.12
MMDTarS 0.88 ± 0.03 0.86 ± 0.04 0.64 ± 0.03 0.2 ± 0.04 0.65 ± 0.03 9.12

M
ap

pi
ng

CORAL 0.74 ± 0.04 0.7 ± 0.11 0.76 ± 0.08 0.18 ± 0.04 0.59 ± 0.07 11.50
MapOT 0.72 ± 0.04 0.57 ± 0.04 0.82 ± 0.03 0.02 ± 0.01 0.53 ± 0.03 14.25
EntOT 0.71 ± 0.04 0.6 ± 0.04 0.82 ± 0.03 0.12 ± 0.06 0.56 ± 0.05 12.75
ClassRegOT 0.74 ± 0.09 0.58 ± 0.04 0.81 ± 0.03 0.11 ± 0.06 0.56 ± 0.06 12.75
LinOT 0.73 ± 0.05 0.73 ± 0.08 0.76 ± 0.06 0.18 ± 0.04 0.6 ± 0.06 11.75
MMD-LS 0.65 ± 0.08 0.68 ± 0.11 0.79 ± 0.05 0.55 ± 0.31 0.67 ± 0.14 10.75

Su
bs

pa
ce JPCA 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.15 ± 0.05 0.64 ± 0.04 11.25

SA 0.74 ± 0.04 0.68 ± 0.04 0.8 ± 0.03 0.11 ± 0.03 0.58 ± 0.03 12.50
TCA 0.46 ± 0.21 0.48 ± 0.09 0.55 ± 0.11 0.56 ± 0.2 0.51 ± 0.15 15.62
TSL 0.88 ± 0.03 0.85 ± 0.04 0.66 ± 0.02 0.19 ± 0.03 0.65 ± 0.03 9.62

O
th

er

OTLabelProp 0.72 ± 0.04 0.58 ± 0.04 0.81 ± 0.04 0.04 ± 0.05 0.54 ± 0.04 14.00
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Table D.11: Accuracy score for simulated datasets compared for all the methods with XGBoost. A
white color means the method does not increase the performance compared to Train Src (Train on the
source). Green indicates that the performance improved with the DA methods. The darker the color,
the more significant the change.
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sh

ift
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d.

sh
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Sub
. sh

ift

M
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n
Ran

k

Train Src 0.89 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 9.25
Train Tgt 0.89 ± 0.02 0.93 ± 0.02 0.77 ± 0.03 0.98 ± 0.01 0.89 ± 0.02 2.25

R
ew

ei
gh

tin
g

Dens. RW 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.22 ± 0.04 0.65 ± 0.03 8.25
Disc. RW 0.68 ± 0.06 0.84 ± 0.03 0.66 ± 0.03 0.2 ± 0.03 0.6 ± 0.04 12.25
Gauss. RW 0.87 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.22 ± 0.03 0.65 ± 0.03 9.12
KLIEP 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 7.12
KMM 0.87 ± 0.04 0.84 ± 0.04 0.67 ± 0.04 0.22 ± 0.04 0.65 ± 0.04 7.62
NN RW 0.88 ± 0.03 0.84 ± 0.04 0.66 ± 0.03 0.2 ± 0.03 0.65 ± 0.03 10.50
MMDTarS 0.88 ± 0.03 0.86 ± 0.04 0.63 ± 0.03 0.22 ± 0.03 0.65 ± 0.03 7.50

M
ap

pi
ng

CORAL 0.71 ± 0.04 0.71 ± 0.11 0.74 ± 0.08 0.17 ± 0.05 0.58 ± 0.07 12.75
MapOT 0.7 ± 0.04 0.59 ± 0.03 0.8 ± 0.03 0.17 ± 0.05 0.56 ± 0.04 13.25
EntOT 0.69 ± 0.05 0.61 ± 0.04 0.8 ± 0.03 0.2 ± 0.02 0.57 ± 0.04 12.25
ClassRegOT 0.82 ± 0.11 0.59 ± 0.03 0.8 ± 0.03 0.16 ± 0.04 0.59 ± 0.05 12.00
LinOT 0.72 ± 0.04 0.68 ± 0.06 0.76 ± 0.04 0.19 ± 0.04 0.59 ± 0.05 12.00
MMD-LS 0.64 ± 0.07 0.68 ± 0.08 0.78 ± 0.04 0.59 ± 0.25 0.67 ± 0.11 10.25

Su
bs

pa
ce JPCA 0.88 ± 0.03 0.84 ± 0.03 0.67 ± 0.03 0.14 ± 0.05 0.63 ± 0.03 10.50

SA 0.72 ± 0.04 0.69 ± 0.04 0.78 ± 0.03 0.13 ± 0.04 0.58 ± 0.04 11.75
TCA 0.48 ± 0.05 0.5 ± 0.05 0.51 ± 0.05 0.51 ± 0.06 0.5 ± 0.05 15.50
TSL 0.89 ± 0.02 0.84 ± 0.04 0.66 ± 0.03 0.21 ± 0.03 0.65 ± 0.03 9.25

O
th

er

OTLabelProp 0.72 ± 0.05 0.59 ± 0.04 0.81 ± 0.04 0.04 ± 0.05 0.54 ± 0.04 13.00
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D.3 Unrealistic validation with supervised scorer

Table D.12 shows the results when we choose the supervised scorer that is when validating on target
labels. It is important to highlight that this choice is impossible in real life applications due to the
lack of target labels.

When using the target labels, the method’s parameters are better validated. This can be seen by the
significant increase in the table (blue values), which are numerous in this table compared to the one
with the selected realistic scorer. For example, the method MMDTarS, which is made for Target
shift, compensates all the shift simulated covariate shifts when we select the model with a supervised
scorer.

When looking at the rank, 11 DA methods have a higher rank than Train Src compared to 8 when
using realistic scorer.

Table D.12: Accuracy score for all datasets compared for all the methods for simulated and real-life
datasets. In this table, each DA method is validated with the supervised scorer. The color indicates
the amount of the improvement. A white color means the method is not statistically different from
Train Src (Train on source). Blue indicates that the performance improved with the DA methods,
while red indicates a decrease. The darker the color, the more significant the change.
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Offi
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T/U
SPS

20
New

sG
rou
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Amaz
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Rev
iew

M
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s

Phis
hin

g

BCI
Ran

k

Train Src 0.88 0.85 0.66 0.19 0.59 0.56 0.54 0.59 0.7 0.72 0.91 0.55 11.27
Train Tgt 0.92 0.93 0.82 0.98 0.88 0.8 0.96 1.0 0.73 1.0 0.97 0.64 1.12

R
ew

ei
gh

tin
g

Dens. RW 0.89 0.87 0.67 0.2 0.59 0.56 0.54 0.59 0.7 0.76 0.91 0.55 11.05
Disc. RW 0.86 0.84 0.73 0.23 0.58 0.53 0.54 0.62 0.69 0.78 0.91 0.56 12.19
Gauss. RW 0.89 0.86 0.65 0.21 0.2 0.44 0.11 0.54 0.6 0.51 0.46 0.25 20.03
KLIEP 0.89 0.88 0.66 0.2 0.59 0.56 0.54 0.58 0.7 0.75 0.92 0.55 10.93
KMM 0.9 0.87 0.67 0.2 0.58 0.55 0.53 0.71 0.66 0.75 0.92 0.54 12.12
NN RW 0.89 0.86 0.67 0.15 0.58 0.55 0.55 0.59 0.66 0.72 0.91 0.54 13.79
MMDTarS 0.88 0.93 0.66 0.27 0.59 0.56 0.52 0.59 0.7 0.74 0.91 0.55 10.99

M
ap

pi
ng

CORAL 0.66 0.84 0.66 0.19 0.6 0.57 0.62 0.75 0.7 0.72 0.92 0.62 8.34
MapOT 0.87 0.63 0.81 0.14 0.54 0.51 0.6 0.77 0.67 0.63 0.84 0.47 14.87
EntOT 0.89 0.61 0.82 0.47 0.61 0.58 0.63 0.88 0.68 0.81 0.87 0.53 9.22
ClassRegOT 0.91 0.59 0.82 0.15 0.61 0.59 0.66 0.98 0.68 0.89 0.9 0.52 6.40
LinOT 0.89 0.81 0.81 0.19 0.6 0.58 0.65 0.88 0.71 0.81 0.91 0.6 5.68
MMD-LS 0.64 0.79 0.81 0.77 0.59 0.56 0.56 0.97 0.68 0.86 0.88 0.58 9.09

Su
bs

pa
ce JPCA 0.88 0.85 0.66 0.19 0.59 0.56 0.56 0.83 0.7 0.8 0.9 0.55 9.13

SA 0.74 0.81 0.8 0.13 0.6 0.58 0.56 0.93 0.7 0.91 0.89 0.59 7.26
TCA 0.44 0.47 0.53 0.5 0.04 NA 0.11 0.56 0.6 0.43 NA 0.27 20.29
TSL 0.88 0.85 0.66 0.86 0.59 0.21 0.3 0.7 0.7 0.61 0.88 0.26 15.12

O
th

er JDOT 0.72 0.57 0.82 0.14 0.61 0.51 0.64 0.77 0.68 0.63 0.8 0.46 13.43
OTLabelProp 0.9 0.76 0.81 0.14 0.61 0.56 0.64 0.89 0.67 0.69 0.86 0.51 11.14
DASVM 0.89 0.86 0.65 0.14 NA NA NA 0.68 NA 0.78 0.88 NA 12.39

D.4 Comparions between supervised and unsupervised scorers

Impact on the cross-validation score. We observe in Figure D.1 the cross-validation score as a
function of the final accuracy for various DA methods type and for both supervised and unsupervised
scorers. As expected, we observe a good correlation between accuracy and cross-validation score with
the supervised scorer. An important remark is that the Circular Validation (CircV) [4] shows some
correlation between accuracy and cross-validation score. It indicates that this unsupervised scorer
might be the most suitable choice for hyperparameter selection. This is supported by our extended
experimental results in Table 2 for which the CircV is selected as the best scorer the most often. A
similar trend can be observed for the Importance Weighted (IW) [49] which is also confirmed in
Table 2.
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Figure D.1: Cross-val score as a function of the accuracy for various DA methods and different
supervised and unsupervised scorers. Each point represents an inner split with a DA method (color of
the points) and a dataset. A good scorer should have a score that correlates with the target accuracy.
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Figure D.2: Change of accuracy of the DA methods with the best realistic unsupervised scorer
(Table 2) w.r.t. the supervised scorer.

Supervised scorer v.s. the best realistic unsupervised scorer. We plot the loss in performance of
the DA methods with the best realistic unsupervised scorer compared to using the supervised scorers
in Figure D.2.

Supervised scorer v.s. realistic unsupervised scorers. We present a scatter plot in Figure D.3 and
Figure D.4 , the accuracy of different DA methods using both supervised scorer and unsupervised
scorer. In this figure, points below the diagonal indicate a decrease in performance when using
the unsupervised scorer compared to the supervised one. The colors represent different types of
DA methods. We can see that the SND, DEV and PE scorers all lead to a large performance loss
compared to the supervised scorer. While IW and CircV results are much more concentrated near the
diagonal, indicating a small loss in performance. This concentration explains why these two scorers
have been selected as the best scorers for most of the methods in Table 2.
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Figure D.3: Accuracy of the DA methods using unsupervised scorers as a function of the accuracy
with the supervised scorer. Colors represent the type of DA methods.
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Figure D.4: Accuracy of the DA methods using unsupervised scorers as a function of the accuracy
with the supervised scorer for the different types of DA methods. Points below the diagonal represent
a decrease in performance when using the unsupervised scorer compared to the supervised one.
Colors represent the dataset on which the DA method is applied.

D.5 Computational efficiency of the DA methods

Figure D.5 shows the average computation time for training and testing each method. These results
are based on one outer split, while we ran the benchmarks for five outer splits. Each method has a
different time complexity. Interestingly, more time-consuming methods are not necessarily more
performant than others. For instance, the highest-ranked methods—LinOT, CORAL, and SA—also
have some of the lowest training and testing times. It’s also worth noting that during the experiments,
we enforced a 4-hour timeout. Thus, the more time-intensive methods might have been even slower
without this timeout.
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Figure D.5: Mean computing time to train and test each method for every experiment outer split.

D.6 Hyperparameters grid search for the DA methods

In this section, we report the grids of hyperparameters used in our grid search for each DA method.
These values are also available in our code that is provided in the supplementary material.
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Table D.13: Hyperparameter grids used in the grid search for each DA method. The hyperparameter
grids were designed to be minimal yet expressive, allowing each method to perform optimally. We
selected parameters based on what seemed most reasonable, according to our best knowledge.

Method Hyperparameter Grid
KLIEP ’cv’: [5],

’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, ’auto’, ’scale’],
’max_iter’: [1000],
’n_centers’: [100],
’random_state’: [0],
’tol’: [1e-06]

KMM ’B’: [1000.0],
’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, None],
’max_iter’: [1000],
’smooth_weights’: [False],
’tol’: [1e-06]

NN RW ’laplace_smoothing’: [True, False]
MapOT ’max_iter’: [1000000],

’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’median’]

JPCA ’n_components’: [1, 2, 5, 10, 20, 50, 100]
SA ’n_components’: [1, 2, 5, 10, 20, 50, 100]
TCA ’kernel’: [’rbf’],

’mu’: [10, 100],
’n_components’: [1, 2, 5, 10, 20, 50, 100]

CORAL ’assume_centered’: [False, True],
’reg’: [’auto’]

MMDTarS ’gamma’: [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, None],
’max_iter’: [1000],
’reg’: [1e-06],
’tol’: [1e-06]

ClassRegOT ’max_inner_iter’: [1000],
’max_iter’: [10],
’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’lpl1’],
’tol’: [1e-06],
’(reg_cl, reg_e)’: [([0.1], [0.1]), ([0.5], [0.5]), ([1.0], [1.0])]

Dens. RW ’bandwidth’: [0.01, 0.1, 1.0, 10.0, 100.0, ’scott’, ’silverman’]
Disc. RW ’domain_classifier’: [’LR’, ’SVC’, ’XGB’]
Gauss. RW ’reg’: [’auto’]
DASVM ’max_iter’: [200]
JDOT ’alpha’: [0.1, 0.3, 0.5, 0.7, 0.9],

’n_iter_max’: [100],
’thr_weights’: [1e-07],
’tol’: [1e-06]

EntOT ’max_iter’: [1000],
’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’norm’: [’median’],
’reg_e’: [0.1, 0.5, 1.0],
’tol’: [1e-06]

LinOT ’bias’: [True, False],
’reg’: [1e-08, 1e-06, 0.1, 1, 10]

TSL ’base_method’: [’flda’],
’length_scale’: [2],
’max_iter’: [300],
’mu’: [0.1, 1, 10],
’n_components’: [1, 2, 5, 10, 20, 50, 100],
’reg’: [0.0001],
’tol’: [0.0001]

MMD-LS ’gamma’: [0.01, 0.1, 1, 10, 100],
’max_iter’: [20],
’reg_k’: [1e-08],
’reg_m’: [1e-08],
’tol’: [1e-05]

OTLabelProp ’metric’: [’sqeuclidean’, ’cosine’, ’cityblock’],
’(n_iter_max, reg)’: [([10000], [None]), ([100], [0.1, 1])]
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